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Multiple Paternity in Loggerhead Turtle Clutches 

J. L. BOLLMER, M. E. IRWIN, J. P. RIEDER, AND P. G. PARKER 

Microsatellite DNA was used to determine paternity in loggerhead turtle clutches. 
Hatchlings from three clutches were genotyped at two loci, as were their mothers 
and a sample of adults. A maximum-likelihood analysis determined the most likely 
number of fathers represented in each clutch using the genotypes and population 
allele frequencies. The analysis concluded that only one of the three clutches was 
sired by multiple males, with two fathers being more likely than three. 

Observational studies of green turtles (Che- 
lonia mydas) have documented both males 

and females mating multiple times in the wild 
(Booth and Peters, 1972; Limpus, 1993) as well 
as in captivity (Ulrich and Parkes, 1978). Using 
allozyme electrophoresis, Harry and Briscoe 
(1988) found multiple paternity in clutches of 

eight of 21 loggerheads (Caretta caretta) sampled 
in Queensland, Australia. Multiple mating may 
be advantageous to female sea turtles to ensure 
fertilization or to allow sperm competition, 
thereby increasing hatching success or offspring 
quality. 

Approximately 35,000 loggerhead females 
nest along the southeast coast of the United 
States with 90% of the nesting occurring in Flor- 
ida (Murphy and Hopkins, 1984). In this study, 
we used microsatellite DNA loci to determine 
the number of fathers represented in three log- 
gerhead clutches from Florida. 

MATERIALS AND METHODS 

Loggerheads nesting on Melbourne Beach, 
Brevard County, Florida, were sampled during 
the summer of 1994. Blood samples of 50-100 
pIl were taken from the femoral vein of 26 adult 
females and stored in 1 ml of lysis buffer (Long- 
mire et al., 1988). Nests of three of these fe- 
males were monitored during their incubation 
period. At hatching, smaller blood samples (10- 
20 [LI) were taken from the dorsal cervical sinus 
of a sample of hatchlings (n = 20, 20, and 22) 
as they emerged. 

Half the volume of each sample was incubat- 
ed at 65 C with 30 Il of Proteinase K (10 pg/ 
Ijl) for 4-12 h. DNA was extracted using phenol 
and chloroform:isoamyl alcohol. Samples were 
then dialyzed 4-12 h at 4 C in TNE2 (10 mM 
Tris, pH 7.9, lOmM NaCl, 2 mM EDTA). DNA 
concentration was estimated spectrophotomet- 
rically. 

Two microsatellite loci, Cc117 and Ei8, were 
amplified using primer sets developed from two 
sea turtle species (C. caretta and Eretmochelys im- 

bricata; FitzSimmons et al., 1995). Polymerase 
chain reactions (PCR) were carried out in 15 xl 
volumes made up of 40-50 ng of template DNA, 
1X PCR buffer, 1 mM dNTPs, 0.5 mM each 

primer, 0.03 U/ipl Taq polymerase, and 3 mM 

MgCl2. Reactions ran at 95 C for 2.5 min, fol- 
lowed by 30 cycles comprising the following: 95 
C for 45 sec, 1 min annealing phase beginning 
at 62 C and declining one degree per cycle until 
55 C where it remained for the final 23 cycles, 
and 72 C for 1 min. This was followed by a final 
72 C extension phase for 5 min. PCR products 
were separated on 7.5% polyacrylamide gels at 
20 watts for 2-3 h. Bands were visualized using 
ethidium bromide and photographed over an 
ultraviolet light box. 

Genotypes of the 26 adult females were de- 
termined by characterizing all alleles at each lo- 
cus by size relative to standard molecular weight 
markers and other alleles in the sample. Geno- 
types of hatchlings were determined by com- 

paring their alleles to those characterized across 
all females. Paternal alleles were identified by 
eliminating the mother's allele from each ge- 
notype. The software package Arlequin (S. 
Schneider, J.-M. Kueffer, D. Roessli, and L. Ex- 
coffier, 1996, unpubl.) was used to test for Har- 
dy-Weinberg equilibrium and linkage disequilib- 
rium. 

To examine the possible number of fathers 
for each clutch, the likelihood of observed ge- 
notypic data was calculated for one, two, and 
three fathers. For a hypothesized number of fa- 
thers, the likelihood calculation considered all 
possible combinations of assigning hatchlings to 
all possible combinations of potential paternal 
genotypes. For each possible distribution, the 
probability of drawing the observed hatchling 
genotypes from that clutch was calculated. The 
likelihood for a given number of fathers was the 
average of the probabilities for all combinations 
with that number of fathers. Equations used 
were derived from the Elston-Stewart peeling al- 
gorithm (Elston and Stewart, 1971; Lange and 
Elston, 1975). It was assumed that allele fre- 
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TABLE 1. SUMMARY OF ALLELIC INFORMATION AT Two LOCI FOR THREE FAMILIES. Frequencies of alleles 258- 
242 at Locus Ccl17 were 0.038, 0.173, 0.038, 0.308, 0.038, 0.077, and 0.328, respectively. Frequencies of alleles 

203-181 at locus Ei8 were 0.058, 0.365, 0.135, 0.019, 0.038, and 0.385, respectively. 

Maternal Hatchling genotypes and Paternal 
genotype frequencies genotype 

Locus Locus Locus 

Clutch Ccl 17 E8 Ccl 17 E8 Ccl 17 Ei8 

94a 242/242 199/199 242/242 20/20 199/203 20/20 242/242 203/203 

94Q 250/246 197/181 246/248 9/20 181/181 4/20 258/248 199/181 
246/258 3/20 197/181 3/20 
250/258 3/20 197/199 7/20 
250/248 5/20 181/199 6/20 

Paternal alleles 

94U 256/250 199/181 256/254 6/22 181/181 12/22 254 181 
250/250 4/22 199/197 2/22 250 197 
250/242 6/22 199/181 6/22 242 181 or 199 
256/242 5/22 181/197 2/22 242 197 
256/250 1/22 256 or 250 

quencies at both loci in potentially breeding 
males were the same as frequencies observed in 
the sample of adult females. For ease of inter- 
pretation, likelihood ratios (not actual likeli- 
hood values) are reported, using the likelihood 
for the most likely number of fathers as the stan- 
dard. 

Because only a sample of hatchlings from 
each clutch and a limited number of primers 
were available for genetic analysis, we ran two 
simulations to estimate our power in determin- 
ing the correct number of fathers for each 
clutch. One simulation determined the chance 
of selecting two fathers when, in fact, only a sin- 
gle male sired a clutch; the other simulation de- 
termined the chance of selecting one father 
when there were actually two. For the second 
simulation, we set the proportion of offspring 
sired by first and second males. Three sets of 
values allocating paternity between males were 
examined: 0.9-0.1; 0.8-0.2; and 0.5-0.5. For 
clutch sample sizes of 15 and 20 offspring (sam- 
pled from larger clutches), 1000 datasets were 
simulated for each study. The power to detect 
two fathers in each case is approximated by the 

TABLE 2. LIKELIHOOD RATIOS FOR ONE, Two, AND 
THREE FATHERS IN EACH OF THREE CLUTCHES. 

Number of fathers 

Clutch 1 2 3 

94tX 1.00 4.47 x 10-4 8.76 X 10-7 
94Q 1.00 2.95 X 10-2 3.95 X 10-4 
94U 0.00 1.00 9.09 X 10-2 

fraction of datasets in which the likelihood for 
two fathers is greater than the likelihood for 
one father. For both simulation studies, we used 
the actual allele frequencies drawn from micro- 
satellite data. 

RESULTS 

There was sufficient polymorphism at the two 
loci to detect multiple fathers if they occurred. 
Among 26 adult females sampled, seven alleles 
were characterized at Ccl 17, with allele frequen- 
cies ranging from 0.038 to 0.328; six alleles were 
present at Ei8, with frequencies ranging from 
0.019 to 0.385 (Table 1). Both loci were found 
to be in Hardy-Weinberg equilibrium (Ccl 17: x2 
= 17.751, P = 0.665, df = 21; Ei8: X2 = 21.185, 
P = 0.131, df = 15). Tests for linkage disequi- 
librium also were nonsignificant (P = 0.312; x2 
= 28.775, df = 30). 

Likelihood analyses indicated two of the 
three clutches (94a and 94Q) exhibited single 
paternity, with one father being over 2200 times 
more likely than two in 94a and over 34 times 
more likely in 94Q (Table 2). Single paternity 
also was suggested by there being only one or 
two paternally derived alleles at each locus 
across hatchlings within each family (Table 1). 
For the third family, 94U, one father was im- 
possible because at least three paternal alleles 
were present at Ccl 17 (Table 1). In this clutch, 
two fathers were 11 times more likely than three 
(Table 2). 

The chance of deciding that two males sired 
a clutch, when a single male is actually the fa- 
ther, is small. For a sample of 15 offspring, the 
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error rate is 2.4% and falls to 2.2% for a sample 
of 20. This error probability continues to drop, 
though not to zero, as the sample clutch size 
increases. When there are actually two sires, our 
analysis has moderate to high power to detect 
the second male. When one male sires 90% of 
the offspring in a clutch, the power to detect 
the second male is estimated to be 64.9% for a 
sample of 15 and 73.2% for a sample of 20 
hatchlings. When the proportion fertilized by 
the first male drops to 80%, the power to detect 
the second male rises to 83.4% for 15 and 
87.4% for 20 offspring. When the two males 
have an equal chance of siring each offspring, 
the estimated power is 91.2% for 15 and 92.6% 
for 20 offspring samples. Because our smallest 

sample contained 20 hatchlings, we are confi- 
dent that we can detect multiple paternity ex- 

cept when success is extremely skewed between 
fathers. The power to detect the second male 
does not increase to 100% even if clutch size is 
infinitely large, because it is possible for two 
males to have identical genotypes. 

DISCUSSION 

One of three loggerhead clutches was deter- 
mined to have been sired by multiple males 
when analyzed with microsatellites, whereas two 
of the clutches were singly sired. It is possible 
that multiple paternity may not be all that com- 
mon in loggerheads, as was suggested by the lev- 
el of multiple mating Harry and Briscoe (1988) 
found in a much larger sample of loggerheads. 
A larger sample size and more loci would be 
needed to better characterize the proportion of 

multiple paternity in the Florida loggerheads. 
The rate at which multiple paternity is ob- 

served in any study may also be influenced by 
the population sex ratio. Because sex in sea tur- 
tles is determined by the temperature at which 
the eggs incubate, in unusually warm seasons, 
the sex ratio of hatchlings is skewed in favor of 
females (Standora and Spotila, 1985). Hatch- 
ling and juvenile loggerhead sex ratios have 
been found to be strongly female-biased along 
the coast of Florida (Wibbels et al., 1991; Mro- 
sovsky and Provancha, 1992), but the sex ratio 
of breeding adults is unknown. 

To calculate the likelihood ratios, we assumed 
that males and females come from the same 
population. Female sea turtles (Meylan et al., 
1990; Bowen et al., 1993) and male green turtles 
(FitzSimmons et al., 1997) exhibit natal philo- 
patry. However, male-mediated gene flow (Karl 
et al., 1992) could occur at feeding grounds or 
along migration routes where individuals from 
different rookeries mix (or "overlap"). This 

could result in male allele frequencies that are 
different from those of females. The degree of 

gene flow between loggerhead populations 
along the Atlantic coast is unknown. The small 
sample of paternally derived alleles in this study 
is a subset of those described in the 26 females 
sampled; thus, we have no evidence that the fe- 
males mated with males from another popula- 
tion. The sample size of paternal alleles needs 
to be much larger before we can test this as- 
sumption. 

As many sea turtle populations decline, it be- 
comes increasingly important to improve our 

understanding of their population dynamics to 
take appropriate conservation measures. Partic- 

ularly important for understanding the relation- 

ship between sex ratio, mating systems, and 

population viability for sea turtles is to examine 
the relationship between multiple paternity and 
fitness for multiple species and to compare mat- 

ing systems and productivity for populations 
with different sex ratios. 
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