Spatial-Temporal Nonlinear Filtering in Command and Control (C2)

M. E. Irwin, The Ohio State University
N. Cressie, The Ohio State University
G. Johannesson, The Ohio State University

Technical Report No. 697

October, 2002

Department of Statistics
The Ohio State University
1958 Neil Avenue
Columbus, OH 43210-1247



Spatial-Temporal Nonlinear Filtering in Command

and Control (C2)

Mark E. Irwin, Noel Cressie, and Gardar Johannesson
Department of Statistics
The Ohio State University

Abstract

Assimilating data in a highly changing dynamic battlespace, which allows
battle commanders to make timely, informed decisions, is a difficult and chal-
lenging problem. In this paper, a spatial-temporal statistical approach to ex-
amining the battlespace is taken, based on noisy data from multiple signals. We
examine the danger-potential field (or danger field) generated by the positions
of an enemy’s weapons in the battlespace. The incoming noisy data is filtered
to update the weapons’ positions and the danger field. Sequential Importance
Sampling, sometimes known as particle filtering, is used to generate realizations
from the posterior distribution of the spatial-temporal danger field. Based on
these realizations, non-linear questions such as the locations of maximum and
minimum danger, the extent of regions exceeding certain danger thresholds, and
changes in the danger field over time can be addressed. One particular Sequen-
tial Importance Sampler, known as the Unscented Particle filter, is compared
to faster but less-accurate approximations based on the Kalman filter, using
data generated from an object-oriented combat-simulation program.

Key Words: battlespace, danger-potential field, Kalman filter, particle filter, resam-
pling, Scaled Unscented Transformation, Sequential Importance Sampler, Unscented
Particle filter.
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1 Introduction

Command and Control (C2) involves a body of applications used by all branches
of the armed forces. These include, but are not limited to, command applications,
operations applications, intelligence applications, fire-support applications, logistics
applications, and communications applications. As C2 needs are shared across all
branches of the armed services, tools developed should be sufficiently flexible to work
across services and across allied forces, as needed.



In developing tools for C2 applications, three goals needs to be considered: an-
alyzing the battlespace, visualizing the battlespace, and understanding the state of
the battlespace. When examining the battlespace, commanders need a wide variety
of information available with critical information highlighted so rapid decisions may
be made. Great flexibility is required, as the questions a commander needs answered
during a battle may change quickly. Information needs to be updated in a timely fash-
ion, and the analysis should be scalable so that consistent information is delivered for
large-scale operations as well as unit tactics.

In a battle situation, a flood of data is often available. Data may arrive from
multiple sources in a wide range of formats such as visual, verbal, and from sensors.
C2 tools need to be able to combine these data into highly useful information. The
tools also need to be able to deal with missing and corrupted data.

One tool for describing the state of the battlespace is mapping of the danger-
potential field [6]. The danger potential of a single weapon depends on two major
factors, the location of the weapon and the weapon’s damage potential. In a bat-
tlespace with multiple weapons, the danger-potential field (or, for short, danger field)
is assumed here to be a sum of the danger potentials for the individual weapons.

In our development of the notion of danger potential, weapon damage is assumed
to be of an explosive type; that is, assume that an ordinance from a weapon affects a
continuous region and is a non-increasing function of distance from its impact point.
The following formula describes one possible form of damage potential at a distance
r from the impact point:

a(l—(r/RP)P2. for0<r <R
o(r) = { 0, otherwise, (1)

where «a, R, p1, and ps are all explosion parameters defined for the weapon of interest.
With this definition, a single location in the battlespace can be affected by damage
resulting from nearby impacts in the space, and the damage potential will vary with
distance from the impact.

Before continuing with the technical definition of the danger field, consider the fol-
lowing notation. Let w denote the location impacted by an ordinance from a weapon
that is positioned at Y = (y1,¥2) in the battlespace D. Of course, battlespaces are
not, static, so we introduce the time component ¢ and let X; denote the state of the
weapon at time ¢, which includes its location Y, plus possibly other information,
such as the weapon’s speed and direction. Further, let f(wls, X;) denote the proba-
bility density function of an impact at w given the weapon’s state X;, and given it
is aiming at a location s in D. Often the density function f will only depend on the
weapon’s state through its location Y;, which is assumed here. Finally, let Z;; denote
the i-th observer’s reported location of the enemy weapon at time t. For example,
Z,; might correspond to a radar observation, and Z,; might correspond to a satellite
observation.

The danger potential at time ¢, generated by a single weapon element in state Xy,
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is defined as the expected damage at any location s:

o(s,1:X,) = / 5(ren)f(wls, X,)dw: s € D, @)

where 74, is the distance between the target location s and the impact point w, and
the other terms are as described above; also see [6]. The aiming-accuracy distribution,
f(wls, X}), is assumed to be based on a lognormal /normal cone shooting probability
distribution, which is described in Section 3.

It should be noted that the danger field g(-, ¢; X;) can be computed in advance for
various possible values of X;. Then, when a filter produces Xj based on present and
past data, the “plug-in” estimate of the danger at s, g(s, ¢; X}), is readily available.

In this paper, it is assumed that the danger potential is summable. That is, the
danger potential at s from the k-th enemy weapon, which is in state Xy, contributes
to the total danger field as follows:

0066 X)) = Y [ B0 a5, Xu) o, 3)

where wy, is the location impacted by an ordinance from the k-th weapon aiming at
s. More generally, if there are weapons of different types, f might depend on £ also.

For the purpose of analysis, it is sufficient to consider the single-weapon case,
although in the application in Section 4 we obtain the total danger field (3) for five
tanks. The only unknown in (2) is the state X;. In this paper, its estimation, and
the consequences of that estimation on making inference on its associated danger
potential, are studied. Let the set of all observations on the weapon up to and
including time ¢ be denoted by Z,.; = (Z,,Z,, ... ,Z;), where for the convenience of
presentation, observation times are equally spaced. Then one possible estimate of the
danger field is

g(s,t;Zy.4) = Elg(s,t; X4)|Z1.4] (4)

- / o5, X)p(X,|Z) dX,

where p(X;|Z;.) is the conditional density of the weapon’s state at time ¢t given the
current and past data. The estimate (4) minimizes the Bayes risk based on the
squared-error-loss function [11].

The state of the weapon at time ¢ can be estimated by

X, = E[X,|Z1,]. (5)

Hence, an alternative estimator of the danger field would be to use the ”plug-in”
method mentioned earlier and substitute (5) into (2) to obtain,

A

G(s,t;Z14) = g(s, 1, Xy). (6)
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Note that this estimator g is different from § given by (4). While (4) is an unbiased
estimator of the danger field in the sense that E[g] = E[g], the estimator (6) will
generally be biased. The size of the bias depends on the degree of non-linearity of
the damage-potential function §(-); see (1) for an example of a non-linear 4(-).

While (4) has many nice properties, such as optimality under squared-error loss,
calculating this estimator usually requires non-trivial computation. At the heart of
the problem of estimating the danger field using (4), is the evaluation of p(:|Z1.),
the conditional density of X; given all of the data up to and including time ¢. Since
the movement of the weapons may be given by highly non-linear dynamic models,
standard Kalman filter (KF) approaches based only on second moments may result
in poor approximations to this conditional distribution. This is further complicated
by the danger potential being a non-linear function of the weapon’s state.

There are a number of approaches for analyzing non-linear systems that go be-
yond the standard Kalman filter. A widely used approach is the extended Kalman
filter (EKF) [1]. In this approach, the non-linear system is linearized, and then the
standard KF is applied to this linearized system. Unfortunately, for many problems,
the EKF does not give an accurate approximation to the posterior mean, variances,
and covariances of the unknown state variables in X;.

Another approach is the Unscented Kalman filter (UKF), due to Julier and Ulh-
mann [19]; see also van der Merwe et al. [27]. This is based on the Unscented
Transformation and the Scaled Unscented Tranformation [18]. Here, instead of lin-
earizing the system, specially chosen realizations of X; given X; ; are determined.
These realizations are based on all the eigenvectors of the variance matrix of X; given
X;_1. The data Z;.; are then combined with these realizations to give approximations
to the posterior mean and variance of X;. This approach has a number of advan-
tages over the EKF. First, the distribution of the underlying state process X; is being
approximated, not the non-linear function describing the evolution of X; from X; 1,
as with the EKF. This allows the UKF to partially incorporate information about
skewness and kurtosis of the distribution, improving the accuracy. Also, the posterior
means and variances of X; can be calculated using standard vector and matrix oper-
ations, and no Jacobians are needed, unlike for the EKF. This suggests that the UKF
can be much faster to compute than the EKF. A description of the UKF is given in
Appendix A.

A similar approach to the UKF is the Ensemble Kalman filter (EnKF) [10, 15].
Instead of a deterministic scheme for generating realizations of X;, a Monte Carlo
approach is taken. This approach has similar advantages to the UKF, as it approxi-
mates the distribution of X; and not the non-linear function describing the evolution
of X; from X;_;. However, as the errors in the approximation are statistical in nature,
the EnKF tends not to be as accurate as the UKF when the same number of chosen
realizations are generated.

Another approach that is similar to the UKF is the Reduced Rank Square Root
filter (RRSRF) [5, 15]. It is similar in that the realizations of X; given X;_; are gen-



erated in a deterministic fashion. However, they are only generated in the directions
of the ¢ leading eigenvectors of the variance matrix of X; given X; ;, where ¢ is less
than or equal to the dimension of the state space. The choice of ¢ is important as
it will affect the accuracy of the approximation. In fact, the UKF can be thought
of as a generalization of this approach with all eigenvector directions being chosen,
whereas the RRSRF appears to go only in the positive eigenvector direction. While
this may speed up calculations, it could lead to a poor approximation as it is unable
to handle skewness in the distribution of X;, given X;_;. A combination of EnKF
and RRSRF, the Partially Orthogonal Ensemble Kalman filter (POEnKF) attempts
to combine the advantages of the individual approaches [15]. However, as for the
EnKF, its approximations are statistical in nature and it tends not to be as accurate
as the UKF.

In all of these Kalman-filter type approaches, only approximations to the first
two moments of the posterior distribution of the state variables are obtained. Unless
the model can be described by a linear Gaussian process, these two moments do not
completely describe the distribution and thus may lead to poor estimates of many
(typically non-linear) properties of the state process.

To overcome these problems, sequential Monte Carlo approaches known as Sequen-
tial Importance Samplers (SIS), or particle filters, have been proposed [27, 24, 14].
SIS has been used successfully to analyze data from terrain navigation [2], ge-
netics [17], and image analysis [4], for example. Another Monte Carlo approach,
known as Markov Chain Monte Carlo, or MCMC [26, 12], is also possible, al-
though it is less suitable to the sequential (or dynamic) nature of this problem; see
the discussion in Section 6. These simulation approaches give many thousands of
realizations{X\” : i = 1,..., N}, from the complete posterior distribution of the
state process, which allows inference on any functional of the posterior distribution,
not just the first two moments. Thus, SIS can be used for estimating the danger field
using (4), by approximating it with the (weighted) average of the associated danger
fields {g(s, t; Xgi)) :1=1,...,N}. Clearly, the main disadvantage when compared to
the various forms of Kalman filtering, is the increased amount of computational time
involved, something that will be addressed in this paper. A detailed presentation of
SIS is given in Section 2.

Statistical inference on functionals of the danger field is straightforward using SIS.
Suppose that a battle commander has a number of queries about the danger field,
which may include the following.

1. Minimum and maximum danger: The locations of the minimum and maximum
dangers could be of great use to a battle commander, suggesting areas that may
need to be supported further or avoided, or regions that could be attacked.

2. Danger thresholds: Regions that need to be supported further or to be avoided
can also be examined by investigating I(g(s,t;X;) > @), the indicator of
whether the danger exceeds a given threshold G.
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3. Changes over time: Given s and t; > t1, evaluate
g(S7 t2; th) - g(S: tl; th)'

4. Regional danger: A battle commander may be interested in danger over a set
of disjoint regions By, By, ..., B,,. The regions of interest may be arbitrary in
terms of shape and size.

When there are potentially many questions or summaries of interest to a battle
commander, a particle-filtering approach has an important advantage. The realiza-
tions from the simulation can be re-used to answer the different questions of interest.
However, for the various forms of Kalman filtering reviewed earlier, a different filter
needs to be run for each of the commander’s queries.

While the Kalman-filter methods may not give optimum answers to solving non-
linear problems, they can in fact be used to improve SIS. In Section 2, it is seen that
SIS relies on the specification of a proposal distribution, the optimal choice of which
is not always computationally feasible. One approach is to use the Extended Kalman
filter to give the proposal distribution, which is known as the extended Kalman
particle filter [8, 25]. A more promising suggestion is the Unscented particle filter
(UPF), where the Unscented Kalman filter is used to generate the proposal distribu-
tion [27, 28]; see Appendix B. The advantages that the Unscented Kalman filter has
over the Extended Kalman filter, carry through to their associated particle filters.

In Section 2, an SIS is developed, resulting in the UPF, which can also be used for
inference on the danger field. In Section 3, a description of a battlespace is given, and
in Section 4, a simulated battlespace dataset is described. Analyses of this dataset
by the Unscented particle filter (UPF), the Unscented Kalman filter (UKF) and the
Extended Kalman filter (EKF), follow in Section 5. Finally, in Section 6, possible
future directions are discussed.

2 Sequential Importance Sampling

In the three subsections that follow, we give a generic description of sequential im-
portance sampling. Application of this methodology is found in Section 5.

2.1 Basic sequential importance sampler

Recall the definition of Z1.;; in a like manner, define X;.; to be the sequence of state
variables up to and including time ¢. In an ideal situation, it would be possible to
simulate directly from p(Xi.|Z;.;), the posterior distribution of Xj.; given the data
Z,.;, where

_ P(X 1) p(Z1:y | X12y)
P =T )

X p(Xlzt)p(Zl:t |X1:t),

(7)



by Bayes Theorem. Both the state-variable density p(X;.), and the measurement
model p(Z;.|X;.;), may have parameters associated with them. When implementing
the methodology presented in the paper, these parameters will have to be estimated,
leading to what is sometimes called an empirical Bayesian methodology. Alternatively,
a fully Bayesian approach could be taken, where these parameters are given prior
distributions and then averaged out [12].

Regardless of the method chosen to deal with the parameters, in many situations
it is possible to use importance sampling techniques to simulate from the desired
posterior distribution. The basic idea is as follows. Instead of simulating directly
from the posterior distribution, a tractible approximation, ¢(Xi.t|Z1.;), is used as the
proposal distribution for sampling, and the realizations are reweighted as follows:

By [h(X1)|Zoa] = / B(X 1) (X1t Zat) X 1

p(Xlzt‘let)
= | M(Xyt) ——5——9(X1:4|Z1.4)dX.
[ 1) S K1l 2 K

:/h(Xl:t)wt(Xl:t)Q(Xl:t‘Zl:t)dXI:t
- Eq[h(Xl:t)wt(Xlzt)|Zl:t]; (8)
where h is a function of interest on the state variables, and

p(Xl:t|Z1:t)
q(Xl:t|Z1:t)

is known as the unnormalized importance sampling weight. Furthermore, the pro-
posal distribution q is known as the importance sampling distribution. Thus, given
an importance sample {X{7), .. XM} generated from ¢(-|Z;;) with associated
importance sampling weights {wt(Xglg), ,wt(Xgﬁ))}, the quantity of interest,
E,[h(X1.t)|Z14], can be consistently estimated by

wy (X)) =

N (i (i)
. . h(X5)w (X5,
Ep[h(Xl:t)‘Zl:t] = Zz_l N( l.t) 721() l.t)
> im1 we(XT3)
N . .
=D hXE)an(X(), (9)
i=1
where u?t(ng%) are the normalized importance sampling weights given by,
(i)
~ i wy (X5, .
@y (X$)) = ~ i 1't)(j) i=1,...,N.
Zj:l w(Xiit)

There are many possible choices for the proposal distribution ¢g. One form that is
useful for many filtering problems is the Sequential Importance Sampler (SIS), where
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the importance sampling distribution has the form,

t

4(X1:t|Z12) = ¢(X1|Z1) H q( Xy X1k-1, Z1k). (10)

k=2

Thus, to implement this sampler, a choice must be made for ¢(X¢|X1.t—1, Z;.) for each
time ¢. As has been shown by Doucet, Gordon, and Krishnamurthy [9], an optimal
choice for ¢ is given by ¢*(Xy|X1.t—1,Z14) = p(X¢|X1:4—1, Z1.¢). This choice is opti-
mal in that it minimizes the variance of the importance sampling weights conditional
on Xi.; 1 and Z;. This possibility has also been advocated by others [21, 17, 23].
Another popular choice is to set ¢(X¢|X1.4 1,Z14) = p(X¢|X1.4 1), the conditional
distribution of the current state X; given its past states. This proposal has the ad-
vantage that it is often easy to implement, but the disadvantage of having potentially
much higher Monte Carlo variation as it does not incorporate the current and past
observations Zj.;.

Note that with SIS, the set of unnormalized importance sampling weights
{wt(XgZ)t)} can be decomposed as,

p(X9|Z..,)
g(XP XY, Zo)p(X$) | 21

wy(X{) = w1 (X)) (11)

For many models, the multiplicative factor,

P(X)|Z1)
g(X1XO L Zoa)p(X ) | Ze1)

I

is easy to compute.
Consider the case where the state process is described by a first-order Markov
process, so that

t

p(X1) = p(Xy) Hp(Xk‘qu); (12)

k=2

and suppose that the measurements are conditionally independent given the states,
so that

t

p(Z1|X1) = [ [ p(ZklXe). (13)

k=1

Then recall that the optimal choice for ¢ is,

¢ (Xt Xiit—1, Z1t) = p(Xe| X1, Zipt) < p(X| Xim1)p(Ze| Xe)- (14)



However, even though the structure is relatively simple, (14) may still not be
tractable for easy generation of importance samples; the model to be presented in Sec-
tion 4 is one such example. Often, the importance sampling distribution (14) can be
well approximated by a Gaussian distribution, such as when the measurement-model
components, {p(Zy|Xy) : k =1,...,t}, are Gaussian. Then a Gaussian approxima-
tion to (14) is, up to a normalizating constant, p(X;|X;_1)p(Z;|X;), where p(X;|X;_1)
is a Gaussian approximation to the state-transition distribution p(X;|X;_1). One pos-
sible way to obtain p(X;|X;_1) is to use the Scaled Unscented Transformation [27]
on p(Xy|X;_1), leading to the Unscented particle filter (UPF). This is the principal
method we use for analyzing the danger field in Section 5. Further details, with
pseudo code for this situation, are given in Appendix B. Alternatively, one might
consider a Taylor-series approximation, yielding the Extended particle filter, however
this approximation will tend to break down as p(X;|X; 1) deviates from a linear
process.

In the case where ¢(X;|X1.4_1,Z1.) in (10) depends on (Xy,_1, Z;.;) through only
(X4-1,Z;), and assuming the first-order Markov model (13), the update formula (11)
for the unnormalized importance sampling weights satisfies,

)p(Xi”|X§“l>p(zt\X£”>

() (%)
wy (X)) o< w1 (X4 W) |~ (G
(XX, 20)

(15)

Thus, for most problems of this type, the multiplicative factor that updates the
weights is easy to compute. For the UPF, the multiplicative factor will often not
vary greatly. However, in the case where the process model is used for the proposal
(i.e., ¢(X¢| X1, 2Z;) = p(Xy|X¢1)), the multiplicative factor for the weight update is
p(Z:|X). This will often lead to very variable weights, yielding a much less efficient
filter.

2.2 Resampling adaptations

One potential problem with the SIS algorithm is that the variance of the importance
sampling weights increases over time [21]. This implies that, as ¢ increases, more
and more realizations will have normalized importance sampling weights close to
zero. Thus, only one, or very few realizations will get the bulk of the weight in the
approximation. This can occur, even if the optimal choice of the proposal distribution
is used.

To avoid these problems, resampling approaches have been proposed [24, 27]. In
these approaches, realizations from the SIS are sampled, possibly a multiple number of
times, and these realizations are used in the next SIS step. Three sampling procedures
that have been proposed are Multinomial Sampling [13], Residual Sampling [16, 23],
and Minimum Variance Sampling [20, 7].

In this paper, the Minimum Variance Sampling procedure will be used. To im-
plement it, one samples N points {Uy,...,Uy} in the interval [0,1], with each of
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the points a distance N~' apart. (That is, Uy ~ Uniform[0,N7'], and U; =
Ui+(i—1)N=%4=2,... ,N.) Then the i-th resampled realization, ngi, is Xglzt, where

Zé b (ngt) <U; < Z 1wt(X§];2) Thus, N;, the number of times X% appears

in the resample, is the number of points from {U;} that are between Z - wt(ngg)
and Z (X ljt) and N, satisfies [Nwt(Xg D] < N < [Nwt(Xg +)]. This proce-
dure can be implemented efficiently since only a single uniform random number on
[0, N~!] needs to be generated; the other two procedures may require the generation
of up to N random numbers. In addition, this resampling procedure induces a smaller
variance on the {/V;}.

After a resampling step, the resulting sample 5(92, cee 5(%? is an equally weighted
sample from p(Xi.|Z1.;). Therefore, the unnormalized weights wt(ng), after resam-
pling, must be reset to N~!. After making this adjustment, the weights at future
times, ¢t +1,t 4+ 2,... (until the next resampling), are determined by equation (11).

How often to resample will depend on the problem of interest and the choice of
proposal distribution. One approach is to set a fixed resampling schedule. That is,
resample at times t = m,2m,3m,..., where m is a ?respe(:lﬁed resampling rate.
A second approach is to monitor the weights {@;(X;.;)} and resample when they
start to become badly behaved. Liu [22] recommends monitoring the weights by
their coefficent of variation and resampling when this exceeds a certain level. In the
examples that follow, a fixed resampling schedule is used with m = 1.

2.3 Using a single sample to answer multiple questions

As exhibited by equations (8) and (9), the expectation of any integrable function of the
state variables can be easily estimated with realizations from the importance sampling
distribution. For example, the posterior mean of the state X; can be estimated by

N
Ep[X4|Z14] = Z ng)ﬁ)t(ng);
i=1

and the danger field at location s and time ¢, as described in Section 1, can be
estimated by

N
Bylg(s,t; X0)| Zua] = ) 95,8 X{P)(X1)),
i=1
where the importance samples are obtained from SIS. Thus, in theory, a single SIS
run can be used to answer multiple questions. However, the number of realizations
N needed for the estimator to reach a specified level of precision will depend on the
variance of the function of interest. So, in choosing NV, one should have a good idea
of the quantities of interest and it should be chosen so that the estimation variance
of each quantity be within a pre-specified precision.
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3 Description of the Battlespace

To examine the properties of SIS and compare its associated UPF to the UKF and
the EKF, data generated by an object-oriented combat simulation program [6] was
used. The program simulates the movement of five tanks in a 100 km by 100 km
battlespace, [0,100] x [0,100]. The battlespace is assumed to consist of flat terrain,
with a town located in the southern part centered at (57.5, 18.5); see Figure 1.
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0 10 20 30 40 50 60 70 80 90 100

0

Figure 1: Battlespace features. The solid lines, in different grey scales, show the five
true paths of the tanks in the 100 km x 100 km battlespace. The dotted lines show
the range of the two radar stations. Also displayed are the locations of the two radar
stations and the town.

Each of the five tanks has the same damage-potential parameters. The damage-
potential function §(-) is given by (1) with maximum damage potential o = 1, explo-
sive radius R = 0.05 km (50 meters), and powers p; = p, = 3. The maximum range
of the ordinance is 4 km.

The aiming-accuracy distribution f is described by a lognormal/normal cone
shooting distribution: For a weapon at Y and a target at s, denote the true dis-
tance between the two locations by 7o = ||'Y — s|| and the angle (in radians) from Y
to s by 6y. Then r, the distance from the weapon at Y to the impact location w, is
distributed as

r ="y X €,
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where ¢, has a lognormal distribution with mean 1 and standard deviation o,. The
angle from Y to w, 0, is distributed as

0:90+69,

where €y ~ N(0,07) and €, and € are independent. In the example, o, = 0.01 and
op = 7/180 radians (or 1°).

4 Battlespace Data

The five tanks start out in two groups, with two in the northwest (at (5,90) and
(10,90)) and three in the northeast (at (80,90), (85,90), and (90,88)). Each tank has
a sequence of three spatial waypoints to reach along its path, with the last waypoint
for each near the town. A waypoint W of an object is, in general, a point in space
and time that the object attempts to reach; see [29]. Note that for this example, the
tanks have proximate waypoints and they are traveling at comparable velocities; the
true paths of the tanks are shown in Figure 1.

4.1 Movement algorithm

The movement of the five tanks are independent given each of their waypoints, and
the path of each tank is updated every 15 seconds for a period of 5 hours. Except for
the waypoints, the movement algorithm is the same for each tank, so for the purpose
of explanation, we concentrate on a single object moving through the two-dimensional
battlespace. At time ¢, assume that the tank is at location Y; = (y1¢, ¥2:), moving at
speed vy in direction 6, (v; and 6; are the speed and angle that resulted in the object’s
moving from position Y;—; to Y;). The speed and angle used to derive the object’s
new position at time (¢ 4+ 1) are given by the random processes,

Vir1 = ppUt + (1 — po)Vigr,
Or1 = poby + (1 — pg)Oy11, (16)

where p, and py are autocorrelation parameters (both specified to be 0.1 in the simu-
lation), and V;4; and ©;,; are random speed and angle changes. The random speed
and angle changes are specified to fluctuate around the targeting speed and the di-
rection that the object is trying to maintain, respectively. The targeting speed was
fixed at 20 km/h for the whole simulation, and V;,; was generated according to,

Vi1 = 20 X €ypy1,

where ey;,1 has a lognormal distribution with mean 1 and standard deviation 0.2.
However, the targeting angle changes at each time point.
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The targeting angle at time t, A;, is specified to be the angle from the current
location of the object, Y}, to its next waypoint, W. The random angle deviation was
then generated according to,

Opp1 = A+ €041,

where €g+1 has a normal distribution with mean 0 and standard deviation 7/9
radians (or 20°). This results in a (wrapped) normal distribution for ©;,, centered
at A;. The position of the object at time (¢ + 1), Y41, is then given by,

Y141 = Y1t + (V41 A1) cos(y41),
Yoir1 = Yor + (Vi1 AL) sin(6py1), (17)

where the time increment At is specified to be 15 seconds. That is, At = (0.25/60)
hours.

4.2 Observations

To observe the movement of the tanks, two radar stations were specified to be at
(10,5) and (90,5). Each radar has an observation radius of 60 km, as shown in Figure
1. Notice that each radar can observe each tank for only part of its path, so that at
any time a tank may be observed by 0, 1, or 2 radar stations.

Observations on the tank locations within range are taken every 15 seconds during
the battlespace simulation, and these observations are specified to have a distribution
given by the radius-angle distribution [6]. Specifically, if the true angle between a
radar station and a target at Y is #;, then the observed angle is § = 6; + ¢y, where
€9 is distributed with mean 0 and variance 03; and if the true distance is rq, then
the observed distance r is randomly distributed with mean r; /(1 — $07) and variance
o2. Note that although r is biased for 71, this choice allows the observed locations,
Z, to be approximately unbiased estimators of the true locations, after converting
back to standard Cartesian coordinates. More precisely, by applying Taylor series
approximations, the observed location Z has,

E[Z|Y]~Y
(18)
var|Z|Y] =~ [o? — ri(1 —v) — 05(02 — riy)]pp’ + 05[0? — riv]ad,

where p = (cosfy,sin6;)’,q = (sin6;, —cosb,)’, and v = (1 — 307)~2 Both radar
stations have the same measurement-error parameters with o, = 0.005 and oy =
7/360 radians (or 0.5°). The observed weapon locations were assumed to be normally
distributed with mean vector and covariance matrix as given above. For the purpose
of illustration, Figure 2 shows tank 3’s true path and its observed locations for the
last 20 minutes.
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Figure 2: True path for tank 3 along with the two sets of radar observations for the
last 20 minutes.

5 Analysis of Battlespace Data

5.1 Battlespace features of interest

To investigate the properties of the three estimation procedures of interest, the Un-
scented particle filter (UPF), the Unscented Kalman filter (UKF), and the Extended
Kalman filter (EKF), a number of features of the battlespace will be investigated.
First, estimates of the paths of the five tanks will be obtained. Next, estimates of
the danger field for the whole battlespace at two times (3 and 5 hours) during the
simulation will be calculated. Finally, three features of the danger at (57.5, 18.5),
the center of the town, for the last 20 minutes of the simulation will be investigated.
Specifically, the danger due to each tank, the probability that the danger due to each
tank exceeds 0.25 damage units, and the combined danger of all five tanks will be
examined.

A secondary factor of interest is the effect of data-collection frequency on the
danger-field estimates. What happens when data are collected every 15 seconds is
compared to what happens when data are collected every 60 seconds during the
simulation. The latter dataset is generated from the original dataset by keeping
every fourth observation.
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5.2 Movement model used for analysis

Without loss of generality, consider a single object moving through the battlespace.
The state of the object at time ¢ is defined as X; = (Y3, vy, 0;), where Y, = (y1¢, Yor)
is its position, v; is its speed, and 6, is its direction of travel at time ¢. We assume
that {X;} is obtained from the following movement equations:

logveyr = logve + €441,
0t—|—1 = gt + 69,t+1, (19)

where €,:+1 and €p;1 are independently distributed with €,:1 ~ N(0,02) and
€o1+1 ~ N(0,0%). Then, given the object is in state X; at time ¢, its position Yy at
time (¢ + 1) is given by,

Y141 = Yie + §(vt+1 cos 01 + v, cos b;)
1 . .
Yo,ur1 = Yor + E(Ut—f-l sin 011 + v sin 6;), (20)

and its state at time (¢t + 1) is X411 = (Yyp1, vep1,0i01). Clearly, {X;} is a first-order
Markov process; see (12).

This is a generic movement model that assumes constant acceleration and change
in angle between time ¢ and time (¢t 4+ 1). Notice that the movement model (19),
(20) does not match the algorithm that describes the manner in which the data were
simulated; see (16), (17). It was deliberately chosen this way, since in practice one
cannot expect to know the true movement process of an object under consideration.

The measurement process Z; given X; is described in Section 4.2. However, since
the variance matrix (18) depends on the unknown parameters r; and 6, they need
to be estimated. Let 71 be the distance between Z; and the radar station, and let él
be the angle from the radar station to Z,. Then substituting 7, and f; into (18), an
estimate of the variance matrix used by each of the filters is obtained.

To implement the three filters, the two variances, o2 and o3, need to be specified.
In this instance, they were obtained from the true simulated paths by matching
moments, yielding the values o, = 0.1 and 0y = 0.2 radians. In addition, a starting
state is needed for each weapon. For each tank, the true state of the weapon just
prior to being detected by the first radar was used. For the UPF and UKF, the
Scaled-Unscented-Transformation parameters were set to o« = 1, 8 = 2, and x = 0;
see Appendix A. For the UPF, analyses are based on N = 1000 imputations for each
tank with resampling done at each step. This choice for the number of imputations
was based on timing and accuracy considerations and test runs.

5.3 Results

Estimates for the various features of interest described in Section 5.1 were obtained for
the three filters (UPF, UKF, and EKF). Implementation was in MATLAB and analyses
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were performed on Red Hat Linux 7.3 servers with dual AMD Athlon 1800+ MP
processors running at 1.533 GHz with 3 GB RAM.

Path estimates

The three filters tend to give similar path estimates during intervals between way-
points when the direction and speed of the tanks do not vary greatly. However, after
the tank passes a waypoint where there is an abrupt change of direction, the UKF
and EKF deviate further from the true path. Clearly, the movement of the tank
during the change is not consistent with the movement model (19) and (20) used for
analysis, but the UPF can adapt to this more quickly than the UKF or the EKF.
This is apparent from Figures 3 and 4.

355 Truth
— UPF
- - UKF
- EKF
351 b
345 i

341

335 L \ L L L
39.8 40 40.2 404 406 408 41 412 414 416

Figure 3: Estimated path for tank 3 for the three estimators, during the abrupt
change of direction shown on the true path.

Danger for the whole battlespace

In Figures 5 and 6, estimates of the danger field at 3 and 5 hours are shown for
the estimation procedure based on the UPF. In comparison, UPF- and EKF-based
estimates of the danger field are too concentrated. This can be seen clearly in Table
1, which shows the areas of the regions with positive danger. As the UKF and EKF
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Figure 4: Error in estimated position for tank 3 for the three estimators, during the
abrupt change of direction shown in Figure 3.

estimators are both plug-in estimators based on (6), and the estimates of the tank
locations are similar for the two methods, the similar areas of positive danger are to
be expected. The area of positive danger based on the UPF accounts for uncertainty
of the danger field caused by uncertainty in the locations, and hence the area is not
overoptimistic.

Table 1: Areas of regions (in km?) with positive danger at 3 and 5 hours into the
simulation.

Time UPF UKF EKF
3 hours 158.69 127.43 127.43
5 hours &81.11 67.59 67.62

Danger at the center of the town

Estimates of the danger at the center of town due to tank 5, during the last 20 minutes
of the simulation, is shown in Figure 7. The estimates based on the UKF and EKF
are similar for both tanks, which is to be expected, since the estimated tank locations
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Figure 5: Estimated danger field at 3 hours based on the UPF estimator. The darker
the gray colour, the higher the danger. The estimated paths for the 5 tanks are
included.

are similar. These two estimates are also similar to the estimate based on the UPF,
once the tank has clearly moved within range of the town. However, at times before
that, the UKF and the EKF yield poor estimates, rather different from the town
center’s posterior mean danger (4). The posterior mean danger, given by an estimate
obtained from the UPF, shows evidence of danger earlier, and this represents a clear
advantage.

The total danger to the center of the town is shown in Figure 8. The sharp
changes in danger occur when a new tank moves within range of the town. As with
the individual tank estimates, the UPF-based estimate of danger does a better job of
accounting for the uncertainties in the tank locations.

Data-collection frequency

The effects of data-collection frequency can be seen in Figure 9. The danger estimates
based on the UPF due to tank 1 are shown for two sampling frequencies. While the
width of the 90% credibility interval around the danger estimate is fairly constant for
the 4-samples-per-minute sampling frequency, this doesn’t hold for the 1-sample-per-
minute sampling frequency. Instead, there is a sawtooth pattern in the width that
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Figure 6: Estimated danger field at 5 hours based on the UPF estimator. The darker
the gray colour, the higher the danger. The estimated paths for the 5 tanks are
included.

increases as one gets further from the last observed data point, until a new radar
observation is taken. Also, as to be expected, the credibility interval for the higher
sampling frequency is tighter, since it is based on more data. While there is greater
precision with the higher sampling frequency, the two UPF-based estimates of danger
during the last 20 minutes are similar.

Direct estimation of danger field

Instead of using (6), the plug-in estimate of danger for the UKF or EKF, one could
potentially estimate danger using these filters directly on the danger field. Unfortu-
nately, this is not feasible for the EKF as it would involve a complicated calculation
of partial derivatives of the danger field. However, it is feasible for the UKF, since
no derivatives are required. While not as good in accounting for uncertainty as the
UPF-based estimate, the danger-field, UKF-based estimate does account for some
of the uncertainty of the tank position. The latter has one main drawback, namely
if there is interest in the danger for many locations simultaneously, the size of the
matrices involved in the UKF may become too large for efficient calculation.
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Figure 7: Estimated danger at the center of town due to tank 5 for the last 20 minutes.

6 Discussion and Conclusions

For the danger field to be a useful tool to the battle commander, quick and accurate
estimation of the field and its features are needed. This can be performed by SIS
procedures, in particular the UPF. The utility of the UPF has been demonstrated with
a small example of tank movement in a battlespace. This example was also analyzed
using two Kalman-filter approaches, the UKF and EKF. While these two approaches
meet the fast-computation requirements, due to their approximative nature they can
break down with respect to accuracy; see below.

As seen in Section 5, the UKF- and EKF-based estimates can be very similar
to the UPF-based estimates, but on occasions they can miss important features of
the danger field that the UPF-based estimates can detect. In the cases where the
three filters give similar results, such as the estimation of the tanks’ locations, the
functionals being investigated are approximately linear. However, the Kalman filters
tend to give poorer answers when the functional of interest is non linear, particularly
for the case of extrema. For example, if we wish to estimate the danger at a location
near the maximum range of a tank, the damage-potential function (1) is highly non
linear in this situation because small changes in distance from the target may lead to
large changes in damage.
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Figure 8: Estimated danger at the center of town due to all 5 tanks for the last 20
minutes.

While the UKF can miss important features, it can be useful when run simulta-
neously with the the UPF. The UKF can be used to give instaneous, though possibly
rough, answers. If alerted by the UKF results, the UPF running in the background
could then be used to derive more accurate results if needed. This approach should
have the advantange of lowering the overall computation burden.

Processing time for the UPF on the state of the tanks, X;, averages approximately
3 seconds per time point £, about 20% of the data collection time. Processing time for
the danger-field summaries vary, depending on the complexity of the summary. As
MATLAB is an interpreted language, recoding the procedures in a compiled language
such as C will likely lead to significant speed increases, which would allow real-time
processing of the danger field by the UPF. Computing time for the two Kalman-filter-
based approaches is not a concern as updates are virtually instanteous. However, the
time advantage of the Kalman filters is offset by their potential to miss important
non-linear features of the processes of interest.

One potential improvement in computation time for SIS-based methods, such
as the UPF, is the use of parallel processing. SIS, as described in this paper, is
based on performing N independent imputations at each time point ¢, which can
be implemented naturally in a parallel fashion. Moreover, if the tanks are processed
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Figure 9: Estimated danger (solid lines) with 90% credibility intervals (dashed lines)
due to tank 1 for two sampling frequencies (4 per minute and 1 per minute) for the
last 20 minutes.

independently (as they are in the example in Section 5), there is a further opportunity
for parallel processing.

The statistical model described in Section 5 is hierarchical. Consequently, another
simulation-based approach called Markov Chain Monte Carlo (MCMC) could be used
to examine the danger field. However, with MCMC samplers, it can be difficult to
exploit the sequential nature of the process and the data. To filter the process at time
(t+1) by MCMC, the direct approach requires rerunning the chain given all previous
data and the latest data at time (¢ 4+ 1). This leads to an increasing computational
burden as more data are collected. With SIS approaches, past states do not need
to be reprocessed, since the necessary adjustment in the posterior distribution due
to the new data is accomplished through the importance sampling weights and the
resampling procedure. Although less efficient than SIS, there are occasions when
an MCMC/SIS hybrid approach is useful. For a certain class of dynamic models,
Berzuini et al. [3] propose a Metropolis-Hastings importance resampling approach
that avoids rerunning the chain when new data are acquired.
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Appendix A

In the description of the UKF that follows, we rely heavily on the exposition of the
method given by van der Merwe et al. [27]. To implement the UKF, the distributions
describing the evolution of the state process p(X;|X;_1) and the measurement model
p(Z:|X}) need to be given in the following form:

e State-process evolution

Xt = u(Xt—I: 6,5) .

e Measurement model

Z, = U(Xt: Gt) )

where §; and €; are independent with means, E[d;] = d; and E[e;] = e;, and variances,
var[d;] = Dy and var(e;] = E;.

The essential ingredient of the UKF is the Scaled Unscented Tranformation (SUT).
The state-process variable X;_; is augmented with the random evolutions of the
state process and the measurement model, yielding the augmented random variable
A, =[XT | 67 €]". Following van der Merwe et al. [27], the UKF that updates the
posterior mean p,, and posterior variance X, of the state variable X, is obtained
through the following sequence of steps:

1. Set t =1 and define
to = E[Xo]
Yo = var[Xy].
2. Fort >0,

(a) Calculate the mean vector and variance matrix of the augmented state
variable A;:

m; = B[A)] = [pi_, df ef]"
., 0 0
C; = var[Ay] = 0 D, O
0 0 E
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(d)

Let n, be the dimension of A;. Note that n, may vary over time as it de-
pends on the dimension of €;, which depends on the number of observations
at time t.

Calculate the (2n, + 1) SUT sigma points and weights:

AO,t =my
Aip=my+ (/(ng +A)Cy)j; 1=1,...,n,
A_ji=my— (\/(na +N)Ch)j;s 7=1,...,n,
W™ = A/ (ng + A)
We? = {M(na+ N} + (1 - o® + B)
Wi =W =W =W = 1)@+ V) G =1,

where A\ = o?(n, + k) — n, is a scaling parameter, and (v/(n, + \)Ct);
is the jth column of a matrix square root of the matrix (n, + A\)C;. The
paramters «, 3, and k are tuning parameters of the SUT. To guarantee
positive-semidefiniteness of the covariance matrix, set £ > 0. It is also
necessary to have 0 < a <1 and g > 0.

Time update:
Write A, = [(AF,)7 (A],)7 (AS)T]7. Then define

jst

0y, 5 —
Xj,t|t—1 = U(Aw Aj,t)’ )= Ngy...,Ng

7,6

Hyt—1 = Z Wj(m)xj,t\t—l

J=—"Na
Na
Y1 = Z Wj(C) (X1 = ][ X1 — Byea]”
J=-na
Zigir=v( X1, A5,); 7= —Nay--- 1N
Na
Vit—1 = Z Wj(m)zj,t|t—1-
p—

Measurement update:
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Define

Cz,z, = Z W]'(C) [Zj,t|t—1 - Vt|t—1][zj,t|t—1 - Vt|t—1]T

Jj=—"naq

Cx,z, = Z Wj(C) [X;':,ﬂt—l - Nt|t71][Zj,t|t—1 - tht—l]T

J=—"a
-1
Kt = CXtZtCZtZt
By = pyeq + Ki(Ze — vy 1)
Et = z:t‘tfl - KtCthtK;F .
The state at time ¢ is estimated using p,, which is the UKF-estimate of the
posterior mean, with its uncertainty given by 3;, which is the UKF-estimate of

the posterior variance. Also, the danger at a location s at time ¢ is given by the
“plug-in” estimate (6), obtained by “plugging in” p, into (6).

3. Increment ¢ by 1 time unit and return to step 2.

Appendix B

Implementation of the Unscented particle filter (UPF) when the state process {X; :
t=0,1,2,...} is described by a first-order Markov process, has a similar structure to
the UKF. However, one major difference is that the Scaled Unscented Transformation
(SUT) is performed on a smaller-dimensional random vector, since the state variable
X;_1 is assumed fixed during each implementation of the transformation. Let A; =
(67 €I']T, where &, and €, are as defined in Appendix A. Then the UPF is obtained
through the following sequence of steps.

1. Set t =1 and initialize the filter:
(a) Sample X(()l), e ,X((]N) from p(Xo)
(b) Initialize the importance sampling weights wO(X(()i)) =x;i=1,...,N.
2. Fort >0,
(a) Calculate the mean vector and variance matrix of A;:
m,; = E[A,] = [d} e/]"

Dto}

C; =var[A;] = [ 0 E,

Let n, be the dimension of A;. As in the UKF case, n, may vary over
time.
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(b) Calculate the (2n, + 1) SUT sigma points and weights:

Ay = my
Aip=my+ (V(ng +A)Cy)j; 1=1,...,n,
A ji=my— (\/(ng +N)Cp)j; 7=1,...,n,
W™ = M (na + A)

= {M(na + N} + (1 -0a*+5)

wim =wi = w0 =W =1/(2(n.+ A); j =

1,...,ng,

where the tuning parameters are as specified in Appendix A.

(c¢) Time update:

Write A, = [(A),)T (A)T]T. Then for each i =1,...
X(i) ()((Z A5) S
gtlt-1 = t—1> Mgy 3y Ng
(m)
“tlt 1= Z W; Xa,t\t 1
J=—Na
(2)
t|t 1= Z W [th\t 17 My 1][Xg,t\t 1
J—_na
(%) _ € .
th|t1_v( Jtlt LA T = ey N
(m) (%)
VL= 30 Wil
J=-"na

(d) Measurement update:
Define

(%) (C) () ()
CZZtZt Z W Z]Zt|t 17 t|t 1][ijt|t 17

Jj=—na

, N, define:

—p) T

(i) ]T
Vit

(C) () 1T
tht Z W jt|t 1 “t\t 1][Zj,t|t 1 _Vt|t—1]

Jj=—7q
K = O ()
“7@ ”’ilg 1 T K(Z)(Zt - V§|2 1)

= =20 - KVCY),, (KP)".

t)t—1

(e) Importance sampling:
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For i = 1,... N, sample Xgi) from q(Xt|X£?1,Zt) = N(p,gi) Egi)), and

7
update the importance-sampling weight (up to a normalizing constant)

XX (2, X

wy(Xiy) = wi—1(X35 1) i) |~ (0
01X}, Z,)

Normalize the weights.

(f) Resample (if desired) as described in Section 2.2.

The state at time ¢ and its contribution to the danger-field at a location s are
estimated using the methods described in Section 2.3.

3. Increment ¢ by 1 time unit and return to step 2.
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