8.6 (3 points) a) Using p-hat, the sample proportion p-hat = 524/1711 = .3167with SE = .01125. Using the Wilson estimate, p-tilde = 526/1715= .3172, with SE = .01125. These are essentially the same. The 99% interval is .2878 to .3457 b) No, we do not know what fraction of the cyclist who are not C) involved in accidents had alcohol in their system. 8.20 (2 points) Because 19 preferred instant coffee, we assume the other 31 a) preferred freshly brewed. The sample proportion is .62 with a SE of 0.0707 (= $\sqrt{\frac{0.5 \times 0.5}{50}}$). The Z statistic is 1.697 and the one-sided p-value is .0446. This is significant at 5%. We conclude that this is strong evidence that freshly brewed is preferred over instant. The 90% interval is .5071 to .733. This shows that there b) is a chance that the "majority" could be as slim as a bare 51% of the population. 8.36 (2 points) The two estimates are .1451 (female) and .3390 (male). a) The SE of the difference is .0281 and the 95% interval is from .13887 to .24903 (male-female). b) The term for female is much larger than for male. Although the estimate for female is closer to 0, which would make its SE smaller, the n for female is so much smaller than for male that the resulting term is more than four times as large. 8.46 (4 points) a) The overall proportion who support the proposal is .454 The SE is .0295 b) C) $H_0: p_1 = p_2 vs. H_a: p_1 \neq p_2$ d) Z = 3.4747 and the two-sided p-value is .0005. This is quite strong evidence that the support differs in the two counties. 9.28 (3 points) Column percents because "source" is the explanatory table. a) These are in the following table. For Cases, Private and Pet store are similar, but Other is rather smaller.

	Private	Pet Store	Other
Cases	36.2	40.0	27.2
Controls	63.8	60.0	72.8

Total 100	100	100	
-----------	-----	-----	--

27 110 10	s, me rerrenting capite grieb empereda taraco.				
	Private	Pet Store	Other	Total	
Cases	111.915	13.0514	91.0332	216	
Controls	231.085	26.9486	187.967	446	
Total	343	40	279	662	

b) The following table gives expected values.

 χ^2 = 6.61, df = 2, p-value = 0.037 which supports a difference between the cases and controls.

9.34 (4 points)

a)

	Regular	World Series	Total
Hit	2584	35	2619
No Hit	7280	63	7343
Total	9864	98	9962

b)

	Regular	World Series
Hit	26.2	35.7
No hit	73.8	64.3
Total	100	100

C)

 H_0 : "Yes" rate is the same for both vs. H_a : the two rates are not the same. Expected values are given below.

	Regular	World Series	Total
Hit	2593.24	25.7641	2619
No hit	7270.76	72.2359	7343
Total	9864	98	9962

Following table gives terms in χ^2 statistic. The value of the statistic is 4.536 with df = 1. The p-value is between .05 and .025. This is fairly strong evidence that the two rates are different.

	Regular	World Series	Total
Hit	.03289	3.31088	3.34377
No hit	.01173	1.18088	1.19261
Total	.04463	4.49176	4.53638

9.35 (3 points)

The column percents are below. Almost 70% of next year's winners are winners this year, while only 30% of next year's winners were losers next year.

	Winner	Loser
Winner	69.7	29.7
Loser	30.3	70.3
Total	100.0	100.0

the same. Expected values are given below.				
	Winner	Loser	Total	
Winner	61	59	120	
Loser	61	59	120	
Total	122	118	240	

 H_0 : "Yes" rate is the same for both vs. H_a : The two rates are not the same. Expected values are given below.

The following table gives terms in χ^2 statistic. The value of the statistic is 38.41 with df = 1. This is extremely significant. This is extremely strong (overwhelming) evidence that the two rates are different.

	Winner	Loser	Total
Winner	9.44262	9.76271	19.2053
Loser	9.44262	9.76271	19.2053
Total	18.8852	19.5254	38.4107

9.36 (2 points)

The pooled estimate is $\frac{1}{2}$ (because we classified based on above or below the median). The SE for the difference is .64559 and Z = 6.1976. Z^2 = 38.41

9.46 (3 points)

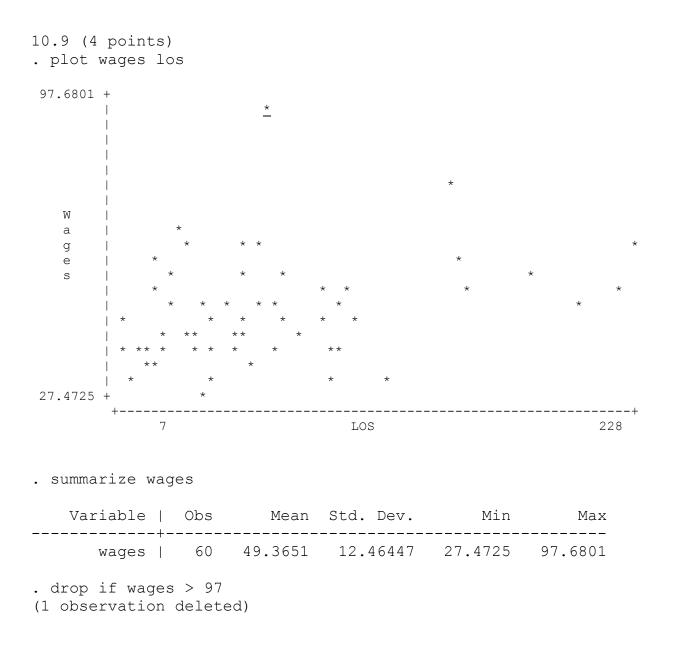
The column percents tell what percent of those with loans entered each field, as well as the percent of those without loans who went into the same fields. A slightly lower fraction of those with loans went into Management than did those without loans, while a slightly higher fraction of those went into Science than did those without loans. The other percents seem quite close.

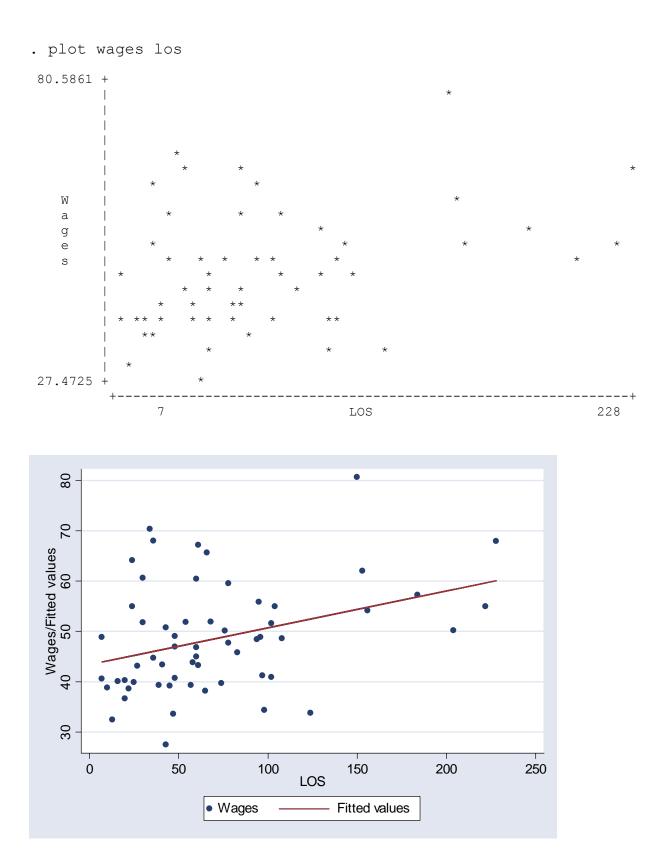
	Loan	No loan	Total
Agriculture	8.7	7.0	7.7
Child	10.1	10.1	10.1
Develop.			
Engineering	26.6	27.6	27.2
Liberal Arts	24.2	24.9	24.6
Management	6.5	10.3	8.7
Science	8.4	5.8	6.9
Technology	15.5	14.3	14.8

The expected values are below.

	Loan	No loan	Total
Agriculture	28.504	38.496	67
Child	37.0127	499.9873	87
Develop.			
Engineering	99.9769	135.023	235
Liberal Arts	90.6173	122.383	213
Management	31.9075	43.0925	75
Science	25.526	34.474	60
Technology	54.4555	73.5445	128
Total	368	497	865

The following table gives terms in χ^2 statistic. The value of the statistic is 6.525 with df = 6. This is extremely insignificant.

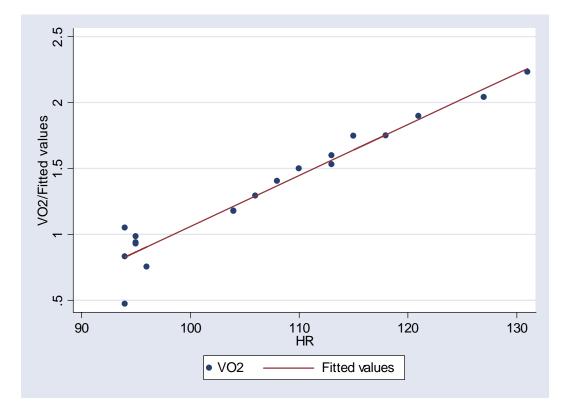

	Loan	No loan	Total
Agriculture	.42877	.31748	.74625
Child	4.4E-06	3.2E-06	7.6E-06
Develop.			
Engineering	.03909	.02894	.06803
Liberal Arts	.02887	.02137	.05024
Management	1.95969	1.45104	3.41073
Science	1.17388	.86919	2.04308
Technology	.1189	.08804	.20693
Total	3.7492	2.77607	6.52526


10.2 (3 points)

 $y = \beta_0 + \beta_0 x + \varepsilon$

a) β_0 is the fixed expenses term.

b) β_1 allows for change when x changes. We expect it to be positive because costs will increase with the number of students. c) ϵ



b)
y = 43.4 + 0.0733x. The t statistic is 2.85 with df = 57. The p-value is .006. The slope is significantly different from 0.
c) The slope tells us that wages increase by .07325 for each increase of 1 in LOS. Without the units, we cannot convert this into a statement of dollars per week.
d) 99% interval is .004748 to .14175

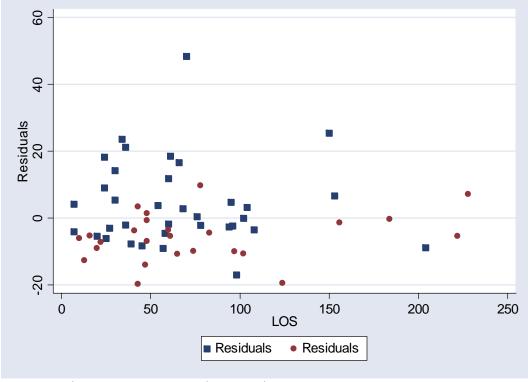
```
10.20 (5 points)
```

a) There are no outliers, although some of the points for low HR are further from the line than the other points.

b) y = -2.80 + 0.0387x

c) The t statistic is 16.10 with df = 17. The p-value is essentially 0. This means that we are quite sure that there is a linear relationship between V02 and HR.

d) For HR = 96, the predicted value is .9062 and the 95% prediction interval is .6396 to 1.1729. For HR = 115, the predicted value is 1.6406 and the 95% prediction interval is 1.3768 to 1.9045.


e) It depends on how accurately they need to know VO2. The regression equation predicts the mean value. The prediction interval show that there is considerable variation among individuals.

10.32 (5 points) a) Minitab output below Source DF SS MS F Ρ 259.27 0.00 Regression 1 3.7619 307619 0.2467 Residual Error 17 0.0145 18 4.0085 Total This tests if the slope is 0, ie whether VO2 is unrelated b) to HR. If H_0 is true, then F has an F(1, 17) distribution. The C) p-value is <.0001 We found t=16.10 and $t^2 = 259.21$ d) $R^2 = SSM/SST = 3.7619/4.0085 = 93.8\%$ e) 10.34 (2 points) $-0.19\sqrt{711}$ + a) 5.160

$$L = \frac{1}{\sqrt{1 - (-0.19)^2}} = -$$

b) df=711, p-value < 0.001. Conclude that $\rho \neq 0$.

10.40 (2 points)

Square is large and circle is small

Most small banks have negative residuals, while large banks have mostly positive residuals. This means that, generally wages at

large banks are higher and small bank wages are smaller than we would predict from the regression.