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Multiple Regression Models

The multiple regression model can be used to describe a wide range of
models including

• Curved response functions

• Categorical predictors

• Interactions - the effect of one predictor variable depends on the level of
another predictor variables

• Non-normal responses, multiplicative errors, etc

These models can be fit into the general framework by adding adding
functions of the predictor variables to the model, such as

x2, x3, log x, x1x2, I(x = man), I(x = woman)
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or by looking at transformations of the response variable, such as 100
MPG (as

in the fuel use example) or log y.
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Polynomial Regression

One approach for describing curved relationships

Include terms like x2 and x3 in the model

General Polynomial Regression Model

yi = β0 + β1xi + β2x
2
i + . . . + βpx

p
i + εi

where εi ∼ N(0, σ).

Example: Speed vs MPG

The effectiveness of a new experimental overdrive gear in reducing gasoline
consumption was studied in 12 trials with a light truck equipped with this
gear.

y = MPG

x = Truck Speed
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Fairly obvious that a straight line model is a poor description of the
relationship between Speed and MPG.
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Lets try the quadratic model

yi = β0 + β1xi + β2x
2
i + εi

For polynomial models, the interpretation of the βs isn’t as nice.

For example, in the quadratic model, increasing x by 1, leads to an expected
change in y of

β1 + β2(2x + 1)

So the change depends on the level of x. Can’t keep x2 fixed when changing
x.
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The fit of the model seems reasonable. The fitted curve seems to follow the
basic pattern in the data and nothing stands out strongly in the residual
plot.
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Fitting polynomial regression models in Stata

As a polynomial regression model is a special case of the multiple linear
regression model, we can do it basically the same way. However you need
to need to create the transformed variables. For example,

. gen speed2 = speed*speed

. regress mpg speed speed2

Source | SS df MS Number of obs = 12
---------+------------------------------ F( 2, 9) = 81.03

Model | 483.167857 2 241.583929 Prob > F = 0.0000
Residual | 26.8321429 9 2.98134921 R-squared = 0.9474
---------+------------------------------ Adj R-squared = 0.9357

Total | 510 11 46.3636364 Root MSE = 1.7267
--------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+----------------------------------------------------------------

speed | 8.983214 .7615635 11.80 0.000 7.260438 10.70599
speed2 | -.0910714 .0079929 -11.39 0.000 -.1091526 -.0729903
_cons | -182.5821 17.67703 -10.33 0.000 -222.5704 -142.5939

--------------------------------------------------------------------------
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The t test for the Speed2 term is significant, implying that adding this term
improves the fit. Lets see if the cubic model does even better.

. regress mpg speed speed2 speed3

Source | SS df MS Number of obs = 12
---------+------------------------------ F( 3, 8) = 52.85

Model | 485.503968 3 161.834656 Prob > F = 0.0000
Residual | 24.4960317 8 3.06200397 R-squared = 0.9520
---------+------------------------------ Adj R-squared = 0.9340

Total | 510 11 46.3636364 Root MSE = 1.7499

--------------------------------------------------------------------------
mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+----------------------------------------------------------------
speed | 1.848677 8.204499 0.23 0.827 -17.07093 20.76828

speed2 | .0619841 .1754158 0.35 0.733 -.3425255 .4664937
speed3 | -.0010741 .0012297 -0.87 0.408 -.0039097 .0017616
_cons | -73.9127 125.6955 -0.59 0.573 -363.7671 215.9417

--------------------------------------------------------------------------
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The t test for the Speed3 term is not significant, implying that adding this
term doesn’t improve the fit.
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Linear Quadratic Cubic
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Also notice that R2 barely increases when the cubic term is added (0.9520
vs 0.9474). However going from linear to quadratic, the increase is from
0.1885 to 0.9474.

When building polynomial models, usually you want to keep the order low
(i.e. p = 2 or 3). Letting p get too large will often give very squiggly fitted
curves.

Also you usually don’t want to skip terms (i.e. don’t use yi = β0+β2x
2
i +εi).

This can lead to poor fits and poor predictions.
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Indicator Variables

When dealing with categorical factors, you can’t directly put them into a
regression model - what does 2 × man or 4 × woman mean?

Categorical factors can be useful in describing relationships.

An approach for dealing with them is through the use of indicator variables
(sometimes called dummy variables).

Example: Fiber Strength

Three different machines produce a monofilament fiber for a textile company.
The process engineer is interested in determining if their is a difference in
the breaking strength of the fiber produced by the three machines. However
the strength of the fiber is related to its diameter, with thicker fibers
being generally stronger than thinner ones. A random sample of five fiber
specimens is selected from each machine.
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y = Fiber Strength (in pounds)

x = Fiber Diameter (in 1/1000 of an inch)

z = Machine (1, 2, or 3)
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It appears that the 3 machines might be different. The fitted line for
machine 3 is lower than the rest and the fitted line for machine 1 is steeper
than the rest.

However there isn’t much data, so the differences might be consistent with
random variation.

Indicator variables

Take values either 0 or 1, depending on the level of the factor.

There is one indicator variable for each level of the factor.
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For the example

m1 =

{
1 if machine 1
0 if machine 2 or 3

m2 =

{
1 if machine 2
0 if machine 1 or 3

m3 =

{
1 if machine 3
0 if machine 1 or 1

When using indicator variables, you need to omit one of them. You could
fit a model like

yi = β0 + β1mi1 + β2mi2 + εi

What do we get for each machine?
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• Machine 1

yi = β0 + β11 + β20 + εi = (β0 + β1) + εi

• Machine 2

yi = β0 + β10 + β21 + εi = (β0 + β2) + εi

• Machine 3

yi = β0 + β10 + β20 + εi = β0 + εi

This gives a different mean level for each machine with the same standard
deviation.

(Note: This is a different way of describing the one-way ANOVA model,
which will be discussed in the future.)
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Note that this is probably not a reasonable description of the data, as it
doesn’t include the diameter of the fiber, which from the plot appears to
be important.

A possibly better model might be

yi = β0 + β1mi1 + β2mi2 + β3xi + εi

For each machine we get

• Machine 1

yi = β0 + β11 + β20 + β3xi + εi = (β0 + β1) + β3xi + εi

• Machine 2

yi = β0 + β10 + β21 + β3xi + εi = (β0 + β2) + β3xi + εi
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• Machine 3

yi = β0 + β10 + β20 + β3xi + εi = β0 + β3xi + εi

This model gives 3 different lines, but all with the same slope (parallel
lines).
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Interaction Models

We may want to use a model with possibly different slopes as well. This
can be done with interaction terms.

Can use the product of two variables as terms in the model like

y = β0 + β1x1 + β2x2 + β3x1x2 + ε

For the fiber example, could try a model something like

yi = β0 + β1mi1 + β2mi2 + β3xi + β4ximi1 + β5ximi2 + εi

For each machine we get

• Machine 1

yi = β0+β11+β20+β3xi+β4xi1+β5xi0+εi = (β0+β1)+(β3+β4)xi+εi
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• Machine 2

yi = β0+β10+β21+β3xi+β4xi0+β5xi1+εi = (β0+β2)+(β3+β5)xi+εi

• Machine 3

yi = β0 + β10 + β20 + β3xi + β4xi0 + β5xi0 + εi = β0 + β3xi + εi

This gives us want we want, three different lines, one for each machine.

This is an example of an interaction, where the effect of one variable
depends on (is influenced by) another variable. In this case, the effect of
diameter on fiber strength depends on which machine the fiber is sampled
from.
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. regress strength diameter mach1 mach2 dmach1 dmach2

Source | SS df MS Number of obs = 15
---------+------------------------------ F( 5, 9) = 22.90

Model | 321.151288 5 64.2302576 Prob > F = 0.0001
Residual | 25.2487121 9 2.80541246 R-squared = 0.9271
---------+------------------------------ Adj R-squared = 0.8866

Total | 346.4 14 24.7428571 Root MSE = 1.6749

--------------------------------------------------------------------------
strength | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+----------------------------------------------------------------
diameter | .8641975 .2080707 4.15 0.002 .393509 1.334886

mach1 | -4.10682 6.663141 -0.62 0.553 -19.17989 10.96625
mach2 | 3.235273 7.378705 0.44 0.671 -13.45652 19.92706

dmach1 | .2400805 .2842515 0.84 0.420 -.402941 .8831021
dmach2 | -.0070547 .3055979 -0.02 0.982 -.6983651 .6842557
_cons | 17.67901 4.474245 3.95 0.003 7.557567 27.80046

--------------------------------------------------------------------------
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Interaction Model

There doesn’t seem to be a pattern that stands out here, though there is
one fairly large residual, though it is less than 2MSE.
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Interaction Model

Fairly straight, so the normality assumption doesn’t seem to be violated.
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Testing whether a set of parameters are all zero simultaneously

For example it would be nice to test whether both interaction parameters
are both 0 (which corresponds to the parallel line model).

H0 : β4 = β5 = 0 vs HA : β4 6= 0 or β5 6= 0 or both 6= 0

• Full model (HA):

yi = β0 + β1mi1 + β2mi2 + β3xi + β4ximi1 + β5ximi2 + εi

• Reduced model (for example H0 : β4 = β5 = 0):

yi = β0 + β1mi1 + β2mi2 + β3xi + εi

These two models can be compared with an F test which measures how
much the fit of the Full model is better than the fit of the Reduced model.
This can be done in Stata with the testparm command.
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. testparm dmach1 dmach2

( 1) dmach1 = 0
( 2) dmach2 = 0

F( 2, 9) = 0.49
Prob > F = 0.6293

Since the p-value is large (F is small), we don’t want to reject the null
hypothesis. The data appears consistent with a constant slope model.

In this F test, the numerator degrees of freedom is the number of βs being
examined and the denominator degrees of freedom is the error df for the
Full model.

Multiple Regression Models 25



. regress strength diameter mach1 mach2

Source | SS df MS Number of obs = 15
---------+------------------------------ F( 3, 11) = 41.72

Model | 318.41411 3 106.138037 Prob > F = 0.0000
Residual | 27.9858896 11 2.54417178 R-squared = 0.9192
---------+------------------------------ Adj R-squared = 0.8972

Total | 346.4 14 24.7428571 Root MSE = 1.595

--------------------------------------------------------------------------
strength | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+----------------------------------------------------------------
diameter | .9539877 .1140483 8.36 0.000 .7029691 1.205006

mach1 | 1.584049 1.10715 1.43 0.180 -.8527714 4.02087
mach2 | 2.620859 1.147759 2.28 0.043 .0946588 5.147059
_cons | 15.77546 2.520854 6.26 0.000 10.2271 21.32382

--------------------------------------------------------------------------
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. testparm mach1 mach2

( 1) mach1 = 0
( 2) mach2 = 0

F( 2, 11) = 2.61
Prob > F = 0.1181

Based on this F test, it appears that the data is also consistent with all
the intercepts being the same, i.e. the relationship between strength and
diameter is the same for all three machines.

However this isn’t completely clear as the t test for β2 has a p-value of
0.043 which is suggestive. This suggests that the intercept for machine 2 is
different from the intercept for machine 3. β2 can also be thought of as the
expected difference in response for machine 2 vs machine 3 for any given
diameter.

Though we need to adjust for multiple comparisons since we have two βs
for describing the machine effects. The Bonferroni correction states we
should compare the p-value with α

2 in this case.
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The graphical summary on the residuals suggests that there are no serious
deviations from the parallel lines model.
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