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Statistical Model for Linear Regression

So far we have only discussed regression as a descriptive technique for
bivariate data.

What we have not discussed is what sort of population that the data might
have been sampled from and what sort of model could be used to describe
the data.

Want to develop a model describing the data generation and which will
allow inference on the parameters of that model.

In the examples we’ve seen before, its possible to have multiple observations
at the same x with different y values.

We can think about each x defining a different subpopulation (stratification
taken to the extreme) and examining the distribution of the y’s for each x.
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The linear regression model assumes that for each x, the observed response
variable y is normally distributed with a mean that depends on x.

Rather than µ1 and µ2 in a two-sample comparision, we are interested on
how µy changes with x.

In simple linear regression, we assume that the µy lie on a line when plotted
against x. The equation of the line is

µy = β0 + β1x

This is the population regression line.

The observed y’s will vary around these means. We will assume that this
variation will have the same standard deviation for each x.
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When we were discussing regression earlier, we discussed the idea of

DATA = FIT + RESIDUAL
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We can use a similar idea for our population data model

DATA = MEAN + RANDOM DEVIATION

The Simple Linear Regression model is

yi = β0 + β1xi + εi

where the deviations, εi are assumed to be independent and normally
distributed with mean 0 and standard deviation σ (εi ∼ N(0, σ)).

The parameters of this model are β0, β1, and σ.

Want to address 3 inference problems

1. The slope β1 and the intercept β0 of the population regression line.

2. The mean response µy for a given value of x.

3. A future response y for a given value of x.
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Parameter Estimates

We will continue to use least squares to estimate the parameters.

Recall

b1 = r
sy

sx

b0 = ȳ − b1x̄

ŷ = b0 + b1x

It can be shown that the sampling distributions of these quantities have
means of β1, β0, and µy respectively (each is an unbiased estimator).

In addition, each quantity is normally distributed (assuming the deviations
are normally distributed).

If they aren’t, a more general form of the central limit theorem says they
should be approximately normally distributed.
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In addition, standard errors for all three quantities can be estimated.

The residuals

ei = yi − ŷi = yi − b0 − b1xi

correspond to the model deviations εi.

Recall that the ei’s have a sample average of 0, similar to the population
mean of the εi being 0.

We will base our estimate for σ on the ei’s. This is needed to get standard
errors for other quantities and may be of interest on its own.
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The usual estimate of σ2 is

s2 =
∑

e2
i

n− 2
=

∑
(yi − ŷi)2

n− 2

This is an unbiased estimator of σ2. In this case s2 has n − 2 degrees of
freedom.

The usual estimate of σ is

s =
√

s2

As before, we will continue to use a stat package to do the calculations. In
particular, the standard errors are difficult to calculate by hand. (We will
talk about the formulas for them later.)
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Example: City driving fuel use in 1993 cars

y =
100

City MPG
= City Fuel

This is the number of gallons needed to go 100 miles on average. We want
to describe its relationship with car weight.
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. regress cityfuel Weight

Source | SS df MS Number of obs = 93
---------+------------------------------ F( 1, 91) = 374.31

Model | 68.8245208 1 68.8245208 Prob > F = 0.0000
Residual | 16.7322059 91 .183870394 R-squared = 0.8044
---------+------------------------------ Adj R-squared = 0.8023

Total | 85.5567267 92 .929964421 Root MSE = .4288

--------------------------------------------------------------------------
cityfuel | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+----------------------------------------------------------------
Weight | .0014662 .0000758 19.35 0.000 .0013157 .0016168
_cons | .1936668 .2370884 0.82 0.416 -.2772802 .6646138

--------------------------------------------------------------------------

b0 = 0.1937 s = 0.4288 (Root MSE)
b1 = 0.001466 s2 = 0.1839 (MSE < MS Residual >)
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As before, we should check the residual plots
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Regression of City Fuel on Weight

This looks pretty good. There is a suggestion of a couple of outliers, but
they don’t look too extreme.
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Question 1: Inference on β0 and β1

As mentioned earlier, b0 and b1 are both normally distributed unbiased
estimates of β0 and β1.

We are in a similar situation as when we are using x̄ to estimate µ.

As in that situation, we will use confidence intervals of the form

estimate± t∗SEestimate

The confidence intervals are

β0 : b0 ± t∗SEb0

β1 : b1 ± t∗SEb1

where t∗ has n− 2 degrees of freedom and confidence level C.
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For 95% confidence intervals, t∗ = 1.986 (df = 91 = 93− 2)

β0 : 0.1937± 1.986× 0.2371

= 0.1937± 0.4709 = (−0.2773, 0.6646)

β1 : 0.001466± 1.986× 0.0000758

= 0.001466± 0.000151 = (0.001316, 0.001617)

--------------------------------------------------------------------------
cityfuel | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+----------------------------------------------------------------
Weight | .0014662 .0000758 19.35 0.000 .0013157 .0016168
_cons | .1936668 .2370884 0.82 0.416 -.2772802 .6646138

--------------------------------------------------------------------------
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Testing on β0 and β1 is also similar to case of using x̄ to estimate µ. The
standard test statistics are:

β0 : t =
b0 − β0hypoth

SEb0

H0 : β0 = β0hypoth

β1 : t =
b1 − β1hypoth

SEb1

H0 : β1 = β1hypoth

Usually the null hypothesis value for both tests is 0.

Note that the test on β0 is rarely done, as the parameter rarely has great
meaning (as we have discussed before).
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However the test of whether β1 = 0 is often of great interest. If β1 = 0
then

µy = β0

which implies the distribution of y doesn’t depend on x in a linear fashion.
The t-test on β1 = 0 examines whether there is a linear relationship between
x and y. This test is usually done two-sided.

For both tests, under the null hypothesis, t have a t distribution with n− 2
degrees of freedom. There for the p-values for the tests are

HA : β1 < β1hypoth p−value = P [T ≤ tobs]

HA : β1 > β1hypoth p−value = P [T ≥ tobs]

HA : β1 6= β1hypoth p−value = 2× P [T ≥ |tobs|]

The p-values are similar for the tests on β0.
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For the example, the tests on whether either of two regression parameters
are 0 are

β0 : t =
0.1936
0.2371

= 0.82; p− value = 2× P [T ≥ |0.82|] = 0.416

β1 : t =
0.001466
0.0000758

= 19.35; p− value = 2× P [T ≥ |19.35|] ≈ 0

--------------------------------------------------------------------------
cityfuel | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+----------------------------------------------------------------
Weight | .0014662 .0000758 19.35 0.000 .0013157 .0016168
_cons | .1936668 .2370884 0.82 0.416 -.2772802 .6646138

--------------------------------------------------------------------------
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Standard errors for b0 and b1

SEb1 =
s√∑

(xi − x̄)2
=

s

sx

√
n− 1

SEb0 = s

√
1
n

+
x̄2

∑
(xi − x̄)2

= s

√
1
n

+
x̄2

s2
x(n− 1)

Implications of these formulas

1. The less spread out the data is around the regression line (e.g. the
smaller s is), the smaller the standard errors.

2. The more data you have, the smaller the standard errors. They both are
similar to SD√

n
.

3. The more spread out your x’s (e.g. the bigger sx is), the more precisely
you can estimate the slope.
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4. The further you data is centered from 0, the less well you can estimate
the intercept.

Question 2: Confidence intervals for a mean response

Interested in the mean response of y when x = x∗

µy = β0 + β1x
∗

Estimate this with

µ̂y = b0 + b1x
∗

The confidence interval for µy is

µ̂y ± t∗SEµ̂y
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The standard error of µ̂y is

SEµ̂y = s

√
1
n

+
(x∗ − x̄)2∑
(xi − x̄)2

= s

√
1
n

+
(x∗ − x̄)2

s2
x(n− 1)

Notice that the SE depends on the x of interest. It is at its smallest when
x∗ = x̄ and increases as x∗ moves away from x̄.

Also notice that when x∗ = 0, µ̂y = b0 and SEµ̂y = SEb0.
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Question 3: Confidence intervals for a future observation (Prediction
Intervals)

Interested in a new observation of y when x = x∗

y = β0 + β1x
∗ + ε

Estimate this with

ŷ = b0 + b1x
∗

The prediction interval for y is

ŷ ± t∗SEŷ
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The standard error of ŷ is

SEŷ = s

√
1 +

1
n

+
(x∗ − x̄)2∑
(xi − x̄)2

=
√

s2 + SE2
µ̂y

SEŷ deals with 2 pieces of uncertainty

1. Uncertainty about the regression line at x∗

2. Deviations of observations from the true regression line

Notice that SEŷ ≥ SEµ̂y and SEŷ ≥ s

Again notice that SE depends on the x of interest. It is at its smallest
when x∗ = x̄ and increases as x∗ moves away from x̄.
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Notice that the prediction interval is wider than the confidence interval for
µy for every x∗. This is to be expected by the formulas for the standard
errors.
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Lets compare the 95% CI for µy with the 95% Prediction Interval (PI) for
y when x∗ = 2000 and 3000 lbs.

x∗ ŷ SEµy SEŷ

2000 3.126 0.0927 0.4387
3000 4.592 0.0448 0.4311

95% CI’s

x∗ = 2000: CI = 3.126± 1.986× 0.0927 = 3.126± 0.184

x∗ = 3000: CI = 4.592± 1.986× 0.0448 = 4.592± 0.089

95% PI’s

x∗ = 2000: CI = 3.126± 1.986× 0.4387 = 3.126± 0.871

x∗ = 3000: CI = 4.592± 1.986× 0.4311 = 4.592± 0.856

Notice that the intervals are narrower when x∗ = 3000 than when x∗ =
2000 (and PIs are wider than CIs).
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