Section 10.2 - More Detail About Simple Linear Regression

Statistics 104

Autumn 2004

Copyright ©2004 by Mark E. Irwin

Analysis of Variance for Regression

. regress cityfuel Weight

Source	S	S	df	1	MS	Number of o	bs =	93
	-+					F(1, 9	1) =	374.31
Model	68.824	5208	1	68.824	45208	Prob > F	=	0.0000
Residual	16.732	2059	91	.1838	70394	R-squared	=	0.8044
	-+					Adj R-squar	ed =	0.8023
Total	85.556	7267	92	.92996	64421	Root MSE	=	.4288
cityfuel	Coef.	Std.	 Err. 	t	P> t	[95% Conf.	Inter	 val]
Weight	.0014662	.0000	758	19.35	0.000	.0013157	.001	6168
_cons	. 1936668	.2370	884 	0.82	0.416	2772802	.664	6138

The Analysis of Variance (ANOVA) Table is an alternative approach to examining a regression model.

The idea behind it is based on

DATA = FIT + RESIDUAL

The variance in the data y is expressed by the deviations

 $y_i - \bar{y}$

This can be broken down as

$$(y_i - \bar{y}) = (\hat{y}_i - \bar{y}) + (y_i - \hat{y}_i)$$

It is possible to show that

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2$$

Section 10.2 - More Detail About Simple Linear Regression

We can rewrite this formula as

$$SST = SSM + SSE$$

where

$$\begin{split} SST &= \sum (y_i - \bar{y})^2 & \text{(Total sums of squares)} \\ SSM &= \sum (y_i - \bar{y})^2 & \text{(Model SS)} \\ SSE &= \sum (y_i - \bar{y})^2 & \text{(Error or Residual SS)} \end{split}$$

If the slope $\beta_1 = 0$, the observations can be viewed as coming from a single population with mean μ_y with the variance described by the sample variance

$$s_y^2 = \frac{\sum (y_i - \bar{y})^2}{n-1} = \frac{SST}{n-1}$$

You can think of SST as the total error variability of the 0 slope model.

As we have seen before, n-1 is the degrees of freedom for the single population model and n-1 is the degrees of freedom for error in the simple linear regression model.

We can breakdown the degrees of freedom like we did the sums of squares

DFT = DFM + DFE

For simple linear regression

$$DFT = n - 1$$
 (Total degrees of freedom)
 $DFM = 1$ (Model df)
 $DFE = n - 2$ (Error or Residual df)

Instead of looking at the sums of squares, we can also look at the mean squares (variability per degree of freedom).

$$MS = \frac{\text{sums of squares}}{\text{degrees of freedom}}$$

So

$$MSE = \frac{SSE}{n-2} = s^2$$
$$MSM = \frac{SSM}{1}$$

We can also fit correlation into this approach to the simple linear regression model. It is possible to show that

$$r^2 = \frac{SSM}{SST}$$

ANOVA F Test

Instead of using the t test to investigate the hypotheses $H_0: \beta_1 = 0$ vs $H_A: \beta_1 \neq 0$, we can look at the ratio

$$F = \frac{MSM}{MSE}$$

If the null hypothesis is false, MSE should be small and MSM should be large (leading to F > 1). If H_0 is true, $MSE \approx MSM(F \approx 1)$.

The sampling distribution of F is an F distrubution with 1 and n-2 degrees of freedom (F(1, n-2))

The p-value for the F test is

$$p$$
-value = $P[F(1, n-2) \ge F_{obs}]$

ANOVA Table

Source	DF	SS		MS		F	
Model	1 SS	$M = \sum (\hat{y}_i - \hat{y}_i)$	– $ar{y})^2$	MSM =	$=\frac{SSM}{DFM}$	$F = \frac{I}{2}$	$\frac{MSM}{MSE}$
Error	n-2 SS	$E = \sum (y_i - $	$(\hat{y}_i)^2$	MSE =	$\frac{SSE}{DFE}$	-	
Total	n-1 SS	$T = \sum (y_i - $	$ar{y})^2$				
Source	SS	df	MS		Number	of obs	= 93
+-					F(1,	91)	= 374.31
Model	68.8245208	1 68.82	245208		Prob >	F	= 0.0000
Residual	16.7322059	91 .1838	370394		R-squar	ed	= 0.8044
+-					Adj R-s	quared	= 0.8023
Total	85.5567267	92 .9299	964421		Root MS	E	= .4288
		Std Frr	 +	DN +			
			ل 	F > U			
Weight	.0014662	.0000758	19.35	0.000	.001	3157	.0016168
_cons	. 1936668	.2370884	0.82	0.416	277	2802 	.6646138

So we have two tests for examining

$$H_0: \beta_1 = 0$$
 versus $H_A: \beta_1 \neq 0$

In fact we really one have one, since it's possible to show that $t^2 = F$ and the *p*-values for the two tests are the same.

In the example $19.35^2 = 374.42$ (within rounding).

The F test is more useful for multiple regression models and in that situation it looks at more complicated hypotheses.

Inference for Correlation

There is a third approach to examining whether the data is better described by a line with slope 0.

If there is no correlation between x and y ($\rho = 0$), the population regression line will have slope $\beta_1 = 0$.

The usual test statistic for examining $H_0: \rho = 0$ is

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

This statistic has a t(n-2) distribution.

The assumption behind this sampling distribution is that x and y are jointly normally distributed.

Getting p-values for this test statistic is similar to other t tests.

$$H_A: \rho < 0 \qquad p-\text{value} = P[T \le t_{obs}]$$
$$H_A: \rho > 0 \qquad p-\text{value} = P[T \ge t_{obs}]$$
$$H_A: \rho \neq 0 \qquad p-\text{value} = 2 \times P[T \ge |t_{obs}|]$$

Should we be confused by have two different t tests in the linear regression setting? No, as this t test on correlation is exactly the same as the t on the slope.

It is possible to show

$$\frac{b_1}{SE_{b_1}} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

The following dataset I'll describe in more detail next class, but I want to show how the different approaches all tie in together.

Source	SS	df	MS			Number of obs	= 26
Model Residual	4510.59756 174203.6	1 24	4510. 7258.	 59756 48334		F(1, 24) Prob > F R-squared	= 0.62 = 0.4382 = 0.0252 = -0.0154
Total	178714.198	25	7148	.5679		Root MSE	= -0.0154 = 85.197
sales	Coef.	Std.	 Err.	t	P> t	[95% Conf	. Interval]
Promotion _cons	7.332297 130.5569	9.30: 53.00	1349 0137	0.79 2.46	0.438 0.021	-11.86474 21.16744	26.52934 239.9463
. pwcorr sales promotion, sig sales promotion				(Pair	wise Co	orrelations)	
sale	es 1.0000						
promotic	on 0.1589	1.00	000				

0.4382

Theoretical Aside

It is possible to link the parameters from a bivariate normal model to the population regression line model.

This is what motivates the relationship between testing whether a correlation is 0 and whether a slope is 0.

$$\beta_1 = \rho \frac{\sigma_y}{\sigma_x}$$
$$\beta_0 = \mu_y - \beta_1 \mu_x$$
$$\sigma_\epsilon = \sigma_y \sqrt{1 - \rho^2}$$