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Normal Distributions

The normal distribution is almost surely
the most common distribution used in
probability and statistics. It is also
referred to as the Gaussian distribution,
as Gauss was an early promoter of its
use (though not the first, which was
probably De Moivre). It is also what
most people mean when they talk about bell curve. It is used to describe
observed data, measurement errors, an approximation distribution (Central
Limit Theorem).

The density is defined by two parameters, the mean µ, and standard
deviation σ. (The mean and standard deviation of a probability distribution
will be defined in section 4.4. Conceptually, they are the similar to the
terms applied to data.)
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The basic form of the normal is:
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The mean µ describes where the density is centered and the standard
deviation σ describes how spread out the density is.
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The normal is symmetric where the median = mean. (For a density curve,
the median is the value that has area exactly 0.5 to the left of it.)
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The Logan arrival times example from last class was a normal distribution
with µ = 30 and σ = 30.
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68-95-99.7 Rule

For a normal with distribution with mean µ and standard deviation σ,

• Approximately 68% of the area falls within 1σ of the mean µ

• Approximately 95% of the area falls within 2σ of the mean µ

• Approximately 99.7% of the area falls within 3σ of the mean µ
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So assuming the model describing the arrival times at Logan is accurate
(I’m sure its not), this rule suggests that about 68% of planes will arrive
just on time to 1 hour late, 95% will arrive between 30 minutes early and
90 minutes late, and virtually all will be between 1 hour early and 2 hours
late.
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The 68-95-99.7 rule suggests that in some sense all normal distributions are
the same. In fact, this can be shown if we measure in units of size σ about
the mean µ.

Changing to these units is known as standardization

z =
x− µ

σ

These standardized values are often called z-scores. A z-score tells us how
many standard deviations the original value is from its mean.
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Standard Normal Distribution

The normal distribution with mean 0 and standard deviation 1 (N(0, 1))

X − N(µ, σ)

Z − N(0, 1)

x

z =
x − µ

σ

If a variable X has a normal
distribution N(µ, σ), then the
standardized variable

Z =
X − µ

σ

is standard normal.

Calculating Normal Probabilities

Since any normal distribution can be
transformed to a standard normal,
we only need to know how to get
probabilities for the standard normal.
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Standard Normal Table

Inside the front cover
of IPS is a standard
normal table. It gives
probabilities of the form
P [Z ≤ z].

Rows: first two digits of
the z-score.

Column: the third digit
of the z-score.

So for example, to get
P [Z ≤ 1.28], go to row
1.2 and column 0.08,
which gives

P [Z ≤ 1.28] = 0.8997
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Using this table, we can get any probability involving standard normals,
which implies we can get any probability involving normals.

1. P [Z > v] = 1− P [Z ≤ v]

2. P [u ≤ Z ≤ v] = P [Z ≤ v]− P [Z ≤ u]
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So for example

P [Z > 1.50]

= 1− P [Z ≤ 1.50]

= 1− 0.9332 = 0.0668

P [1 ≤ Z ≤ 2]

= P [Z ≤ 2]− P [Z ≤ 1]

= 0.9972− 0.8413

= 0.1359
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Suppose for example that blood pressure (X) can be modelled
(approximately) by a normal distribution with µ = 120 and σ = 20.
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Suppose we are interested in the
following probabilities

1) P [X ≤ 90]

2) P [X > 140]

3) P [90 ≤ X ≤ 140]

To calculate these probabilities we need to preform the following steps

1. Standardize the necessary endpoints.

2. Get probabilities from the table

3. Do necessary arithmetic
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1) P [X ≤ 90]

z(90) =
90− 120

20
= −1.5

P [X ≤ 90] = P [Z ≤ 1.5] = 0.0668

2) P [X > 140]

z(140) =
140− 120

20
= 1

P [X > 140] = P [Z > 1] = 1− P [Z < 1] = 1− 0.8413 = 0.1587
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3) P [90 ≤ X ≤ 140]

P [90 ≤ X ≤ 140] = P [−1.5 ≤ Z ≤ 1] = 0.8413− 0.0668 = 0.7745
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Inverse Problem

Find values of the random variable that correspond to probabilities of
interest.

1. 75% of people have blood pressures less than what?

2. What blood pressure is exceeded by 40% of people?

x = µ + zσ

z

75%

x = µ + zσ

z

40%

If Z ∼ N(0, 1) then X = σZ + µ ∼ N(µ, σ)
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Steps:

1. Find percentile z∗ for the standard normal

2. Transform to the desired units

x∗ = σz∗ + µ

To do step 1), find the probability in the table closest to the desired
probability. Then the row and column give z∗.
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1) 75% of people have a
blood pressure less than
what?

What z∗ gives
P [Z ≤ z∗] ≈ 0.75

z∗ = 0.67

Now transform back to
original units

x∗ = 20× z∗ + 120

= 20× 0.67 + 120

= 133.4
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2) What blood pressure
is exceeded by 40% of
people?

What z∗ gives
P [Z ≥ z∗] ≈ 0.40

This is equivalent to
P [Z ≤ z∗] ≈ 0.60

z∗ = 0.25

x∗ = 20× z∗ + 120

= 20× 0.25 + 120

= 125
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Assessing Normality

One of the reasons mentioned earlier for examining normal curves is that
they are often good descriptions for real data.

May want to check that assumption when dealing with data.

1. Does the histogram look normal

2. Does data match the 68-95-99.7 rule

3. Normal Quantile plots (Also called Normal Probability plots or Normal
Scores plots

The idea behind Normal Quantile plots: Are the ordered values spread out
properly?

Compares the ordered data with what would be expected if the data were
really normal.
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If the data is approximately normal, the points on a Normal Quantile plot
should lie close to a straight line. Systematic deviations from a straight line
indicate non-normal data. Outliers appear as points that are far away from
the overall pattern.

Assume y(1) ≤ y(2) ≤ . . . ≤ y(n) are the ordered data values and let
z1 ≤ z2 ≤ . . . zn be the expected order statistics from a standard normal.
zk approximately satisfies

P [Z ≤ zk] =
k + 0.5
n + 1

; k = 1, 2, . . . , n

The Normal Quantile plots zk on the x-axis vs y(k) on the y-axis.
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Idealized patterns

• Desirable
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• Overdispersed (long tailed)
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• Skewed right
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Simulated Examples

• Simulated Normal Data

BP

D
en

si
ty

80 100 120 140 160

0.
00

0
0.

01
0

0.
02

0

−2 −1 0 1 2

80
12

0
16

0

z − scores

O
rd

er
ed

 B
P

Section 1.3 - Normal Distributions 24



• Simulated Skewed Data
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Real Examples

• South Bend Rainfall
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• Highway MPG
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Note: In Stata, the Normal Quantile (which is available under Graphics
> Distributional Plots menu or with the qnorm command) plot the
ordered data against the expected order statistics for a normal with the
same mean and standard deviation as the data.

It plots szk + ȳ vs y(k). This doesn’t change the use of the graph as all it
is doing is relabelling the x-axis in the plot
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