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Numerical Summaries of Probability Distributions

Data:

Sample mean

x̄ =
1
n

n∑

i=1

xi =
1
n
x1 +

1
n
x2 + . . . +

1
n
xn

Assume that there are k different x’s, x(1), x(2), . . . , x(k), where x(i) is
observed ni times.

x̄ =
n1

n
x(1) +

n2

n
x(2) + . . . +

nk

n
x(k)

where ni
n is the proportion of times seeing x(i) in the dataset.
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This suggests the following summary for the center of a discrete RV.

Mean of a discrete RV

µx = x1p1 + x2p2 + . . . + xkpk

=
k∑

i=1

xipi

(when the sum is well defined)

µx describes the center of a probability distribution like x̄ describes the
center of a dataset.
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Examples:
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1) Sum of two 4-sided dice

Outcome Probability
2 0.0625
3 0.1250
4 0.1875
5 0.2500
6 0.1875
7 0.1250
8 0.0625

µx = 2× 1
16

+ 3× 2
16

+ 4× 3
16

+ 5× 4
16

+6× 3
16

+ 7× 2
16

+ 8× 1
16

= 5
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2) Rainfall example

xi pi

0 0.3164
1 0.4219
2 0.2109
3 0.0469
4 0.0039

µx = 0× 0.3164 + 1× 0.4219 + 2× 0.2109

+3× 0.0469 + 4× 0.0039

= 1
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Data:

Sample variance

s2 =
1

n− 1

n∑

i=1

(xi − x̄)2

=
1

n− 1
(x1 − x̄)2 +

1
n− 1

(x2 − x̄)2 + . . . +
1

n− 1
(xn − x̄)2

Similarly to before

x̄ =
n1

n− 1
(x(1) − x̄)2 +

n2

n− 1
(x(2) − x̄)2 + . . . +

nk

n− 1
(x(k) − x̄)2

Section 4.4 - Means and Variances of Random Variables 5



Variance of a discrete RV

σ2
x = (x1 − µx)2p1 + (x2 − µx)2p2 + . . . + (xk − µx)2pk

=
k∑

i=1

(xi − µx)2pi

Standard deviation of a discrete RV

σx =
√

σ2
x

(when the sum is well defined)

σ describes the spread of a probability distribution like s describes the
spread of a dataset.
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Examples:
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1) Sum of two 4-sided dice

Outcome Probability

2 0.0625

3 0.1250

4 0.1875

5 0.2500

6 0.1875

7 0.1250

8 0.0625

σ2
x = (2− 5)2 × 1

16
+ (3− 5)2 × 2

16
+ (4− 5)2 × 3

16
+ (5− 5)2 × 4

16

+(6− 5)2 × 3
16

+ (7− 5)2 × 2
16

+ (8− 5)2 × 1
16

= 2.5

σx =
√

2.5 = 1.58
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2) Rainfall example

xi pi

0 0.3164
1 0.4219
2 0.2109
3 0.0469
4 0.0039

σ2
x = (0− 1)2 × 0.3164 + (1− 1)2 × 0.4219 + (2− 1)2 × 0.2109

+(3− 1)2 × 0.0469 + (4− 1)2 × 0.0039

= 0.75

σx =
√

0.75 = 0.866
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Not surprisingly, µx, σx, and σ2
x are also defined for continuous RVs as

follows

µx =
∫

xf(x)dx

σ2
x =

∫
(x− µx)2f(x)dx

σx =
√

σ2
x

(when the integrals are defined)

Section 4.4 - Means and Variances of Random Variables 9



Law of Large Numbers

What is the relationship between x̄ and µx?

• Generate data from a probability model

• Look at x̄ after each trial

Law of Large Numbers

Draw independent observations at random from any population with
finite mean µ. Decide how accurately you would like to estimate µ.
As the number of observations drawn increases, the mean x̄ of the
observed values eventually approaches the mean µ of the population
as closely as you specified and then stays that close.

As the sample size increases, x̄ → µx.

Similar to the idea that long-run relative frequencies approach the
true probabilities.
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To be a bit more precise mathematically, the Law of Large Numbers says
than

P [X̄ < µx − c or X̄ > µx + c] → 0

or equivalently

P [−c < X̄ − µx < c] → 1

as the sample size n goes to ∞ for any value of c. (This is the weak law of
large numbers. There is also the strong law of large numbers.)

How big does n need to be for x̄ to be close to µ? It depends on the
problem. With a bigger σ, you need a bigger sample to guarantee you will
get close to µ. We’ll discuss this relationship in chapter 5.
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Linear Transformations

e.g. ◦F →◦C or Z = X−µ
σ

In general, Y = aX + b

As we saw when dealing with real data

ȳ = ax̄ + b

sy = |a|sx

Similar relations hold for probability distributions

µy = aµx + b

σy = |a|σx

Note that these relationships hold for discrete and continuous distributions.
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Adding and Subtracting Random Variables

Example:

X: return for stock 1 — X ∼ N(µx = 100, σx = 50)

Y : return for stock 2 — Y ∼ N(µy = 150, σy = 75)
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Return

Company 1
Company 2
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What is the return from both stocks?

Z = X + Y

What are µz and σz?

The first is easy

µz = µx + µy

So for this example, µz = 100 + 150 = 250.
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However there isn’t enough information to get the standard deviation.

Suppose stock 1 is Motorola and stock 2 is Verizon. Since both companies
have large involvement in the cellular phone industries, it wouldn’t be
surprising to for stocks to do well together or to do poorly together.

However suppose that stock 2 was Getty Oil. Motorola and Getty stock
returns should have much less association.

So to get σz, we also need to know the correlation between X and Y (call
it ρ). ρ is the probability analogue to the sample correlation r and has the
same properties as r. Then

σ2
z = σ2

x + σ2
y + 2ρσxσy

σz =
√

σ2
z =

√
σ2

x + σ2
y + 2ρσxσy

Section 4.4 - Means and Variances of Random Variables 16



Suppose that ρ = 0.5 (Motorola and Verizon), then

σ2
z = 502 + 752 + 2× 0.5× 50× 75

= 11875

σz =
√

11875 = 108.972

Instead, now suppose that ρ = 0 (Motorola and Getty), then

σ2
z = 502 + 752 + 2× 0× 50× 75

= 8125

σz =
√

8125 = 90.139
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Now suppose that we are interested in the difference in the returns between
the two stocks (which one has the better payoff).

D = X − Y

What are µD and σD?
µD = µx − µy

so for the example, µD = 100 − 150 = −50 (stock 2 is expected to be
better by 50).

Like for the sum, we need the correlation between the two stocks to get the
variance and the standard deviation of the difference.

σ2
D = σ2

x + σ2
y − 2ρσxσy

σD =
√

σ2
D =

√
σ2

x + σ2
y − 2ρσxσy
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Suppose that ρ = 0.5 (Motorola and Verizon), then

σ2
D = 502 + 752 − 2× 0.5× 50× 75

= 4375

σD =
√

4375 = 66.144

Instead, now suppose that ρ = 0 (Motorola and Getty), then

σ2
D = 502 + 752 − 2× 0× 50× 75

= 8125

σD =
√

8125 = 90.139
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Why does the correlation make a difference in σ of a sum or difference?
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When ρ > 0, there is a positive association, so values greater than the
mean for one variable tend to go with values greater than the mean in the
other variable. Similarly, smaller than the mean tends to go with smaller
than the mean.

When ρ ≈ 0, a value greater than the mean on the first variable should get
matched roughly half the time with a value greater than the mean on the
second variable. The other half of the time, it should get matched with a
value less than the mean.

So when two positively associated variables are added, both values will tend
to be on the same size of the mean, so adding them together will push the
sum far from the sum of the means.

And when two positively associated variables are differenced, you will get
some cancellation, pulling the difference back towards the differences of the
means.

When the two variables are negatively associated (ρ < 0), you get the
opposite effects. (Think about when you will get cancellation and when you
will get effects to combine in the same direction.)
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The rule about means holds regardless of ρ. However ρ is needed to get
the variances and standard deviations.

Also note that the rules for means and variances don’t depend on what
the distributions are. The normality assumptions made in the example were
only there so the plots could be created easily.
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Relationship between ρ and independence

If two random variables are independent, then ρ = 0.

However ρ = 0 does not imply independence. Like r in the data case, ρ
describes the linear relationship between two random variables. There could
be a non-linear relationship between two random variables and ρ could be
0.

If ρ = 0, the two variance formulas reduce to

σ2
z = σ2

x + σ2
y σz =

√
σ2

x + σ2
y

σ2
D = σ2

x + σ2
y σD =

√
σ2

x + σ2
y

Remember: Variances add, not standard deviations.

Math note: The formula for the variance of the sum of two independent
random variables is effectively Pythagoras theorem and the dependent case
is related to the Law of Cosines.
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