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The Sampling Distribution of a Sample Mean

Example: Quality control check of light bulbs

Sample n light bulbs and look at the average failure time.

Take another sample, and another, and so on.

What is the mean of the sampling distribution? Variance? Standard
Deviation?

What is P [X̄n ≥ µx] or P [µx − c ≤ X̄n ≤ µx + c]?

We will consider the situation where the observations are independent (at
least approximately). In the case of finite populations, we want N À n.

Under this assumption, we can use the same idea as we did to get the mean
and variance of a binomial distribution.
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X̄ =
1
n
(X1 + X2 + . . . + Xn)

µx̄ =
1
n

(µx + µx + . . . + µx)︸ ︷︷ ︸
n times

= µx

σ2
x̄ =

1
n2

(σ2
x + σ2

x + . . . + σ2
x)︸ ︷︷ ︸

n times

=
σ2

x

n

σx̄ =
σx√
n

So the sampling distribution of X̄ is centered at the same place as the
observations, but less spread out as we should expect based on the law
school example.

The smaller spread also agrees with the law of large numbers, which says
X̄ → µx as increases.
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Note the sampling distribution of p̂ is just a special case. p̂ is just an
average of n 0’s or 1’s. The formulas have the same form

µp̂ = p

σ2
p̂ =

p(1− p)
n

σp̂ =

√
p(1− p)

n
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Lets suppose that the life times of the light bulbs have a gamma distribution
with µx = 2 years and σx = 1 year.

Sample n bulbs and calculate sample average

µx̄ = µx = 2

σx̄ =
σx√
n

=
1√
n

Lets see how the sampling distribution changes as n increases along the
sequence n = 2, 10, 50, 100

We will examine this two ways:

• The exact sampling distribution (which happens to be also a gamma
distribution with the appropriate mean and standard deviation).

• Monte Carlo experiment with 10,000 samples of X̄ for each n. The blue
line is the exact sampling distribution
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As the sample size n increases, the sampling distribution of X̄ approaches
a normal distribution.
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Central Limit Theorem

Assume that X1, X2, . . . , Xn are independent and identically distributed
with mean µx and standard deviation σx. Then for large sample sizes n,
the distribution X̄ is approximately N(µx, σx√

n
)

Note that the normal approximation for the distribution of p̂ is just a special
case of the Central Limit Theorem (CLT).

What is a large sample size?

As we saw with the binomial distribution, how well the normal approximation
for p̂ depended on how p, which influenced the skewness of the population
distribution.

This same idea holds for the general for the CLT.

If the observations are normal, X̄ has precisely a normal distribution for any
n, since, as we’ve discussed before, sums of normals are normal. However
the farther the density looks like a normal, the bigger that n needs to be for
the approximation to do a good job.
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The sampling distributions based on observations from the Gamma(5,1)
distribution (µx = 5, σx =

√
5) look more normal than the sampling

distributions based on observations from the Exponential distribution (µx =
1, σx = 1). For every sample size, the distribution of X̄ is more normal for
the Gamma distribution than the Exponential distribution.
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The Central Limit Theorem allows us to
make approximate probability statements
about X̄ using a normal distribution, even
though X is not normally distributed.

So for the light bulb example with n = 50,
the P [X̄ ≤ 1.9] can be approximated by
the normal distribution.

P [X̄ ≤ 1.9] = P

[
X̄ − 2

1√
50

≤ 1.9− 2
1√
50

]

= P [Z ≤ −0.707]

≈ 0.2398

The true probability is 0.2433.
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The CLT can also be used to make statements about sums of independently
and identically distributed random variables. Let

S = X1 + X2 + . . . + Xn = nX̄

Then

µS = nµx̄ = nµx

σ2
S = n2σ2

x̄ = n2σ
2
x

n
= σ2

xn

σS = σx

√
n

So S is approximately N(nµx, σx
√

n) distributed.
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Relaxing assumptions for the CLT

The assumptions for the CLT can be relaxed to allow for some dependency
and some differences between distributions. This is why much data is
approximately normally distributed. The more general versions of the
theorem say that when an effect is the sum of a large number of
roughly equally weighted terms, the effect should be approximately normally
distributed.

For example, peoples heights are influenced a (potentially) large number of
genes and by various environmental effects. Histograms of adult men’s and
women’s heights are both well described by normal densities.

Another consequence of this, is that X̄ based on a simple random
samples, with fairly large sampling fractions are also approximately normally
distributed.
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Sampling With and Without Replacement

Simple Random Sampling is sometimes referred to sampling without
replacement. Once a member of the population is sampled, it can’t
be sampled again. As discussed before, the without replacement action of
the sampling introduces dependency into the observations.

Another possible sampling scheme is sampling with replacement. In this
case, when a member of a population is sampled, it is returned to the
population and could be sampled again. This occurs if your sampling
scheme is similar to repeated rolling of a dice. There is no dependency
between observations in this case, as at each step, the members population
that could be sampled are the same. This situation is also equivalent to
drawing from an “infinite” population.
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When SRS is used, the variance of the sampling distribution needs to be
adjusted for dependency induced by the sampling.

The correction is based on the Finite Population Correction (FPC)

f =
N − n

N

which is the fraction of the population which is not sampled.

Then the variance and standard deviation of X̄ are

σ2
x̄ =

σ2
x

n
f

σx̄ =
σx√
n

√
f

So when a bigger fraction of the population is sampled (so f is smaller),
you get a smaller spread in the sampling distribution.
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However when n is small relative to N , this correction has little effect.
For sample, if 10% of the population is sampled, so f = 0.9, the standard
deviation of the sampling distribution is about 95% (

√
0.9) of the standard

deviation for that of with replacement sampling. If a 1% sample is taken,
the correction on the standard deviation is 0.995.

Except when fairly large sampling fractions occur, the FPC is usually not
used.
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