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Random Variables

A Random Variable (RV) is a response of a random phenomenon which is
numeric.

Examples:

1. Roll a die twice and record the sum. (Discrete RV)

2. The coin flip example where the response X is the flip number of the
first tail. (Discrete, countable RV)

3. Count α particles emitted from a low intensity radioactive source.

Let Ti = waiting time between the i − 1th and the ith emissions.
(Continuous RV)

Let YT = # of emissions in time interval [0, T ]. (Discrete RV)
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4. Throw a dart at a square target and record the X and Y coordinates
of where the dart hits. Z = (X, Y ) is a random vector. (Both are
continuous RVs)

• Discrete: The values taken come from a discrete set. There may be a
finite number of possible outcomes (e.g. 11 as for the sum of two dice),
or countable (infinite, as for the flip that the first tail occurs).

• Continuous: The values taken come from an interval (possibly infinite).
In the dart example X ∈ [−1, 1] (finite), whereas in the radiation example
Ti ∈ [0,∞) (infinite).
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Note that RVs are usually indicated by capital letters, usually from the end
of the alphabet (X,Y, Z etc). Letters from the beginning of the alphabet
are left to denote events.

Instead of working with events, it is often easier to work with RVs. In fact
for any event A ⊂ Ω, we can define an indicator RV

IA =

{
1 If A occurs
0 Otherwise

From this definition, we get

IAc = 1− IA

IA∩B = IAIB

IA∪B = IA + IB − IAIB

Instead of using logic and set operations when working with events, we use
algebra and arithmetic operations on RVs
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For something to be a random variable, arithmetic operations have to make
sense. I would not classify the following as a RV

X =





1 if Fred
2 if Ethel
3 if Ricky
4 if Lucy

What does 1 + 4 (i.e. Fred + Lucy) mean here.

A RV X is a function from Ω (domain) to the real numbers. The range of
the function (the values it takes) will, obviously, depend on the problem
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Example: Flip a biased coin 3 times and let X be the number of heads.
Assume the flips are independent with P [H] = p and P [T ] = 1− p.

ω X(ω) P [ω]

HHH 3 p3

HHT 2 p2(1− p)
HTH 2 p2(1− p)
THH 2 p2(1− p)
HTT 1 p(1− p)2

HTT 1 p(1− p)2

HTT 1 p(1− p)2

TTT 0 (1− p)3

For this example, the range of X = {0, 1, 2, 3}.

The probability measure on the original sample space, Ω, gives the
probability measure for X.
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For the above example, the probability measure is defined by

P [X = i] =
(

3
i

)
pi(1− p)3−i

This happens to be the probability mass function for X.

Definition: Assume that the discrete RV X takes the values
{x1, x2, . . . , xn} (n possibly ∞). The Probability Mass Function (PMF)
of the discrete RV X is a function on the range of X that gives the
probability for each possible value of X:

pX(xi) = P [X = xi]

=
∑

ω:X(ω)=xi

P [ω]
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Any valid PMF p(x) must satisfy

• pX(xi) ≥ 0

• ∑
i pX(xi) = 1

In the coin flipping example, assume that p = 0.5 (i.e. the coin is fair).
Then the probability histogram of the PMF looks like
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Definition: The Cumulative Distribution Function (CDF) of a RV X is
a function on the range of X that gives the probability of being less than
or equal x

F (x) = P [X ≤ x]

The CDF is a nondecreasing function satisfying

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

The PMF and the CDF are closely related as (for discrete RVs)

F (x) =
∑

xi:xi≤x

p(xi)

Also, assuming that x1 < x2 < . . .

p(xi) = F (xi)− F (xi−1)
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The CDF for the coin flipping example looks like
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For a discrete RV, the CDF is a step function, with jumps of p(xi) at each
xi. Also it is right continuous. For the coin flipping example

lim
x→0−

F (x) = 0 and lim
x→0+

F (x) = p(0)
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For discrete RVs, independence is easily defined. Let X and Y be two
discrete RVs taking values x1, x2, . . . and y1, y2, . . . respectively. Then X
and Y are said to be independent if for all i and j

P [X = xi, Y = yj] = P [X = xi]P [Y = yj]

(You don’t need to check all possible events involving X and Y .)

For three or more RVs, the obvious extension is the case.
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Expected Values

Definition: The Expected Value of a RV X (with PMF p(x)) is

E[X] =
∑

x

xp(x)

assuming that
∑

i |xi|p(xi) < ∞. This is a technical point, which if ignored,
can lead to paradoxes.

There are well defined RV that don’t have a finite expection. For example,
see the St. Petersberg Paradox (Example D, page 113).
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• E[X] can be thought of as an average

Example: Flipping 3 coins

x 0 1 2 3

p(x) 1
8

3
8

3
8

1
8

E[X] = 0× 1
8 + 1× 3

8 + 2× 3
8 + 3× 1

8 = 1.5

E[X] is the average value of the balls in this urn.

E[X] serves as a “central” or “typical” value of the distribution.
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• You bet an amount θ on each draw (with replacement) from the urn for
X. The payoff in each draw is the value drawn (or X(ω) for the sample
point drawn). What is the bet θ∗ that makes this a fair game? [In the
sense that in the long run, the winning or loss will become smaller and
smaller relative to the total amount of your bets.]

Answer: θ∗ = E[X]

Justification: To come (Law of Large Numbers)

Theorem. If Y = g(X), then

E[Y ] =
∑

x

g(x)pX(x)

Proof. Since Y is also a RV is also has its own PMF.

pY (y) = P [{x : g(x) = y}]
=

∑

{x:g(x)=y}
pX(x)
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Therefore

E[Y ] =
∑

y

ypY (y)

=
∑

y

y
∑

{x:g(x)=y}
pX(x)

=
∑

y

∑

{x:g(x)=y}
g(x)pX(x)

=
∑

x

g(x)pX(x)

2

So instead of figuring out the PMF for the transformed RV, we can directly
calculate the expected value.

Expected Values 15



Example: Let Y = X2

x -2 2 5

pX(x) 1
4

1
2

1
4

y 4 25

pY (y) 3
4

1
4

Example: Let X = IA for some event A. Then

E[X] = 1P [A] + 0P [Ac] = P [A]

E[X2] = 1P [A] + 0P [Ac] = P [A]

In general E[g(X)] 6= g(E[X])
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• Expected value of a linear function

If a and b are constants, then

E[a + bX] = a + bE[X]

Proof. Simple algebra 2

• Expected value of a sum of 2 RVs

E[Y + Z] = E[Y ] + E[Z]

Note that this only defined if Y and Z are defined on a common sample
space.
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Proof. Both Y and Z are RVs on a common sample space Ω. Then

E[Y + Z] =
∑
ω

(Y + Z)(ω)P [ω]

=
∑
ω

(Y (ω) + Z(ω))P [ω]

=
∑
ω

Y (ω)P [ω] +
∑
ω

Z(ω)P [ω]

= E[Y ] + E[Z]

2

For practical reasons, the results of this may not make sense, even if it
is well defined. For example, let Y = number of coins in pocket and
Z = time to get to Science Center from home, when students in the
class are sampled.
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