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Continuous Random Variables

When defining a distribution for a continuous RV, the PMF approach won’t
quite work since summations only work for a finite or a countably infinite
number of items. Instead they are based on the following

Definition: Let X be a continuous RV. The Probability Density Function
(PDF) is a function f(x) on the range of X that satisfies the following
properties:
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• f(x) ≥ 0

• f is piecewise continuous

• ∫∞
−∞ f(x)dx = 1
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For any a < b, the probability that P [a < X < b] is the area under the
density curve between a and b.
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∫ b
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f(x)dx
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Note that f(a) is NOT the probability of observing X = a as

P [X = a] =
∫ a

a

f(x)dx = 0

Thus the probability that a continuous RV takes on any particular value is
0. (While this might seem counterintuitive, things do work properly.) A
consequence of this is that

P [a < X < b] = P [a ≤ X < b] = P [a < X ≤ b] = P [a ≤ X ≤ b]

for continuous RVs. Note that this won’t hold for discrete RVs.
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Note that for small δ, if f is continuous at x
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So the probability of seeing an outcome in a small interval around x is
proportional to f(x). So the PDF is giving information of how likely an
observation at x is.
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As with the PMF and the CDF for discrete RVs, there is a relationship
between the PDF, f(x), and the CDF, F (x), for continuous RVs

F (x) = P [X ≤ x] =
∫ x

−∞
f(u)du

f(x) = F ′(x)

assuming that f is continuous at x.

Based on this relationship, the probability for any reasonable event describing
a RV can determined with the CDF as the probability of any interval satisfies

P [a < X ≤ b] = F (b)− F (a)

Note that this is slightly different than the formula given on page 47. The
above holds for any RV (discrete, continuous, mixed). The form given on
page 47

P [a ≤ X ≤ b] = F (b)− F (a)
only holds for continuous RVs.
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Example: Uniform RV on [0,1] (Denoted X ∼ U(0, 1))

What most people think of when we say pick a number
between 0 and 1. Any real number in the interval is
possible and equally likely, implying that any interval of
length h must have the same probability (which needs
to be h). The PDF for X then must be

f(x) =

{
1 0 ≤ x ≤ 1
0 x < 0 or x > 1
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The CDF for a U(0, 1) is

F (x) =





0 x < 0
x 0 ≤ x ≤ 1
1 x > 1
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One way to think of the CDF is that you give a value of the RV and it gives
a probability associated with it (i.e. P [X ≤ x]). It can also be useful to go
the other way. Give a probability and figure out which value of the RV is
associated with it.

Lets assume that F is continuous and strictly increasing in some interval I
(i.e. F = 0 to the left of I and F = 1 to the right of I) (note I might
be unbounded). Under these assumptions the inverse function F−1 is well
defined (x = F−1(y) if F (x) = y).

Definition: The pth Quantile of the distribution F is defined to be the
value xp such that

F (xp) = p or P [X ≤ xp] = p

Under the above assumptions xp = F−1(p).
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Note: Defining quantiles for discrete distributions is a bit tougher since the
CDF doesn’t take all values between 0 and 1 (due to the jumps)

−1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF for number of heads in 3 flips

x (number of heads)

P
[X

 <
=

 x
]

The definition above can be extended to solving the simultaneous equations

P [X ≤ xp] ≥ p and P [X < xp] ≤ p
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This can be though of as the place where the CDF jumps from below p to
above p
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Expected Values and Moments

Definition: The Expected Value of a continuous RV X (with PDF f(x))
is

E[X] =
∫ ∞

−∞
xf(x)dx

assuming that
∫∞
−∞ |x|f(x)dx < ∞.

The expected value of a distribution is often referred to as the mean of the
distribution.

As with the discrete case, the absolute integrability is a technical point,
which if ignored, can lead to paradoxes.

For an example of a continuous RV with infinite mean, see the Cauchy
distribution (Example G, page 114)
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As with the discrete case, E[X] can be thought as a measure of center of
the random variable.

For example, when X ∼ U(0, 1)

E[X] =
∫ 1

0

xdx = 0.5
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Not surprisingly, expectations of functions of continuous RVs satisfy the
expected relationship

E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx

For example, if X ∼ U(0, 1),

E[X2] =
∫ 1

0

x2dx =
1
3

This is often easier than figuring out the PDF of Y = g(X) and applying
the definition as there is often some work to figure out the PDF of Y .
(Which we will do later, it does have its uses)

As with discrete RVs, g(E[X]) 6= E[g(X)] in most cases. However, with a
linear transformation Y = a + bX

E[a + bX] = a + bE[X]
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Spread of a RV

−2 −1 0 1 2

X

P
[X

=
x]

0.
00

0.
10

0.
20

0.
30

−2 −1 0 1 2

X

P
[X

=
x]

0.
00

0.
10

0.
20

0.
30

x -1 0 1

p(x) 1
3

1
3

1
3

x -2 -1 0 1 2

p(x) 1
9

2
9

3
9

2
9

1
9

Expected Values and Moments 15



−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

f(
x)

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

f(
x)

f(x) =

{
0.5 −1 ≤ x ≤ 1
0 Otherwise

f(x) =





0.5 + x
4 −2 ≤ x ≤ 0

0.5− x
4 0 ≤ x ≤ 2

0 Otherwise

All these distributions have E[X] = 0 but the right hand side in each case
has a bigger spread. A common measure of spread is the Standard Deviation
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Definition: Let µ = E[X], then the Variance of the random variable X is

Var(X) = E[(X − µ)2]

provided the expectation exists.

The Standard Deviation of X is

SD(X) =
√

Var(X)

For a discrete RV,
Var(X) =

∑

i

(xi − µ)2p(xi)

For a continuous RV

Var(X) =
∫ ∞

−∞
(x− µ)2f(x)dx
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The variance measures the expected squared difference of an observation
from the mean. While the interpretation of the standard deviation isn’t
quite easy, it can be thought of a measure of the typical spread of a RV.

It can be shown that, assuming that the variance exists,

Var(X) = E[X2]− (E[X])2

This form is often useful for calculation purposes.

Notation: The variance is often denoted by σ2 and the standard deviation
by σ.
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For the examples
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What is the effect of a linear transformation (Y = a + bX) on the variance
and standard deviation?

Var(a + bX) = b2Var(X) SD(a + bX) = |b|SD(X)

These two results are to be expected. For example, if two possible X values
differ by d = |x1−x2|, the corresponding Y values differ by |b|d, suggesting
that we want the standard deviation to scale by a factor of |b|. Since the
variance measures squared spread, it needs to scale by a factor of b2.

The factor a not having an effect also makes sense. Adding a to a random
variable shifts the location of its distribution, but doesn’t changes the
distance between corresponding pairs of points.
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