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Interaction Models

Lets examine two models involving Weight and Domestic in the cars93
dataset.

weight.domestic.lm <- lm(HighFuel ~ Weight + Domestic,
data=cars93)

weight.domestic.int.lm <- lm(HighFuel ~ Weight * Domestic,
data=cars93)

Remember that the second model is a shorthand for

HighFuel ~ Weight + Domestic + Weight : Domestic
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> summary(weight.domestic.lm)

Residuals:
Min 1Q Median 3Q Max

-0.781506 -0.244967 0.002068 0.180682 0.922104

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.923e-01 1.853e-01 5.355 6.5e-07 ***
Weight 8.354e-04 6.065e-05 13.774 < 2e-16 ***
DomesticDomestic -3.449e-02 7.120e-02 -0.484 0.629
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> summary(weight.domestic.int.lm)

Residuals:
Min 1Q Median 3Q Max

-0.78647 -0.21346 -0.03952 0.17163 0.99145

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.264e-01 2.504e-01 2.501 0.0142 *
Weight 9.597e-04 8.347e-05 11.498 <2e-16 ***
DomesticDomestic 7.421e-01 3.721e-01 1.994 0.0492 *
Weight:DomesticDomestic -2.529e-04 1.190e-04 -2.125 0.0364 *

Both models fit give regression lines for HighFuel vs Weight. The first is
the additive model, which is of the form

yi = β0 + β1wi + β2di + εi
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The second model is of the form

yi = β0 + β1wi + β2di + β3widi + εi

where di is 1 for domestic cars and 0 for foreign cars

These can be written as

yi =





β0 + β1wi + εi Foreign car

(β0 + β2)︸ ︷︷ ︸
β∗0

+β1wi + εi Domestic car

and

yi =





β0 + β1wi + εi Foreign car

(β0 + β2)︸ ︷︷ ︸
β∗0

+(β1 + β3)︸ ︷︷ ︸
β∗1

wi + εi Domestic car

The second model is an example of an interaction. In this case, the effect
of weight depends on whether the car is domestically made or not. It is
fitting the equivalent to what is displayed in the figure
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As mentioned last class to indicate interactions in S, you use either * or :.
Usually you want to use *, as its shorter and it also leads to good statistical
practice. Consider the models (where x and y are quantitative)

z ~ x*y z ~ x:y

The first model is equivalent to z ~ x + y + x:y, a standard model of
interest. The second model would fit

zi = β0 + β1xiyi

Usually you don’t want to fit a model with the lower order terms missing.
For example, with HighFuel ~ Weight:Domestic, S would be fitting

yi =

{
β0 + β1wi + εi Foreign car

β0 + εi Domestic car

Not a particularly reasonable model.
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Note: this idea is a good rule of thumb. There may be situations where you
might want to include higher order interactions but drop out lower order
ones.

One possibility of this is

yi = β1xi + β2xidi + εi

Here the main effect for di is missing. This model is describing regression
through the origin for xi, with different slopes for different levels of di.

If terms get repeated in a model description, the repeats get dropped, so
don’t worry about them. So for example

y ~ A*B + B*C

is a fine way of describing the model

y ~ A + B + C + A:B + B:C
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Polynomial Models

It is easy to fit polynomial models in S. However there is a slight trick to it
(particularly in R). One approach you might consider is a call like

> weight2a.lm <- lm(HighFuel ~ Weight + Weight^2, data=cars93)
> summary(weight2a.lm)

Residuals:
Min 1Q Median 3Q Max

-0.768280 -0.239028 0.005072 0.199289 0.909606

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.940e-01 1.845e-01 5.387 5.56e-07 ***
Weight 8.290e-04 5.898e-05 14.057 < 2e-16 ***

This only fits the linear term (the Weight^2 term gets dropped). (Actually
this only happens in R. It will do what you expect in S-Plus.)
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Instead you need to use the I() operator as in the following

> weight2.lm <- lm(HighFuel ~ Weight + I(Weight^2), data=cars93)
> summary(weight2.lm)

Call:
lm(formula = HighFuel ~ Weight + I(Weight^2), data = cars93)

Residuals:
Min 1Q Median 3Q Max

-0.76605 -0.23896 0.01345 0.19332 0.91241

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.278e-01 8.696e-01 0.952 0.344
Weight 9.430e-04 5.855e-04 1.611 0.111
I(Weight^2) -1.879e-08 9.607e-08 -0.196 0.845
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Residual standard error: 0.3355 on 90 degrees of freedom
Multiple R-Squared: 0.6848, Adjusted R-squared: 0.6778
F-statistic: 97.78 on 2 and 90 DF, p-value: < 2.2e-16

> anova(weight2.lm)
Analysis of Variance Table

Response: HighFuel
Df Sum Sq Mean Sq F value Pr(>F)

Weight 1 22.0027 22.0027 195.5175 <2e-16 ***
I(Weight^2) 1 0.0043 0.0043 0.0383 0.8454
Residuals 90 10.1282 0.1125

This gives you what you want.
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Removing Terms from Models

It is also possible to remove terms from models. For example

y ~ A + B + C + A:B + A:B + B:C

could have been written

y ~ A*B*C - A:B:C

so it can be used as a shorthand to write more complicated models.

Another situation where it is useful to to compare two models. Consider in
the crab example where we want to compare the models

RW ~ sex * sp

and

RW ~ sex + sp
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One way of doing this is by

crab.int.lm <- lm(RW ~ sex * sp, data=crabs)
crab.add.lm <- update(crab.int.lm, . ~ . - sex:sp)

This could also be done by

crab.add2.lm <- lm(RW ~ sex + sp, data=crabs)
crab.int2.lm <- update(crab.add2.lm, . ~ . + sex:sp)

To see whether the interaction model gives a better fit, we can look at the
command

> anova(crab.add.lm, crab.int.lm)
Analysis of Variance Table

Model 1: RW ~ sex + sp
Model 2: RW ~ sex * sp
Res.Df RSS Df Sum of Sq F Pr(>F)

1 197 1074.4
2 196 1016.4 1 58.0 11.184 0.0009884 ***
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Note that this isn’t needed for this example as

> anova(crab.int.lm)
Analysis of Variance Table

Response: RW
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 112.05 112.05 21.608 6.133e-06 ***
sp 1 131.38 131.38 25.336 1.087e-06 ***
sex:sp 1 58.00 58.00 11.184 0.0009884 ***
Residuals 196 1016.36 5.19

gives the same information.

Another useful situation where removing a term may be useful is to get rid
of the intercept. For example to fit a regression through the origin you can
do
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> weight.orig.lm <- lm(HighFuel ~ Weight - 1, data=cars93)
> summary(weight.orig.lm)

Residuals:
Min 1Q Median 3Q Max

-0.820327 -0.227628 -0.009304 0.320788 1.050421

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Weight 1.141e-03 1.263e-05 90.33 <2e-16 ***

Residual standard error: 0.3811 on 92 degrees of freedom
Multiple R-Squared: 0.9888, Adjusted R-squared: 0.9887
F-statistic: 8159 on 1 and 92 DF, p-value: < 2.2e-16

There is some evidence for this model. First the physics suggests it. In
addition
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> weight.lm <- lm(HighFuel ~ Weight, data=cars93)
> summary(weight.lm)

Call:
lm(formula = HighFuel ~ Weight, data = cars93)

Residuals:
Min 1Q Median 3Q Max

-0.768280 -0.239028 0.005072 0.199289 0.909606

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.940e-01 1.845e-01 5.387 5.56e-07 ***
Weight 8.290e-04 5.898e-05 14.057 < 2e-16 ***

Residual standard error: 0.3337 on 91 degrees of freedom
Multiple R-Squared: 0.6847, Adjusted R-squared: 0.6812
F-statistic: 197.6 on 1 and 91 DF, p-value: < 2.2e-16
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> anova(weight.orig.lm, weight.lm)
Analysis of Variance Table

Model 1: HighFuel ~ Weight - 1
Model 2: HighFuel ~ Weight
Res.Df RSS Df Sum of Sq F Pr(>F)

1 92 13.3643
2 91 10.1325 1 3.2318 29.025 5.564e-07 ***

Removing the intercept is useful in some ANOVA models as it gives another
parameterization. For example,

> type.lm

Call:
lm(formula = HighFuel ~ Type, data = cars93)

Coefficients:
(Intercept) TypeLarge TypeMidsize TypeSmall TypeSporty TypeVan

3.3768 0.3725 0.3965 -0.4979 0.1475 1.2098
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> type.noint.lm

Call:
lm(formula = HighFuel ~ Type - 1, data = cars93)

Coefficients:
TypeCompact TypeLarge TypeMidsize TypeSmall TypeSporty TypeVan

3.377 3.749 3.773 2.879 3.524 4.587

In the second approach, the parameter estimate are the sample means for
each Type.

Another example is
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> weight.domestic.int.lm

Call: lm(formula = HighFuel ~ Weight * Domestic, data = cars93)

Coefficients:
(Intercept) Weight DomesticDomestic
0.6263581 0.0009597 0.7420544

Weight:DomesticDomestic
-0.0002529

> weight.domestic.int2.lm

Call: lm(formula = HighFuel ~ Domestic/Weight - 1, data = cars93)

Coefficients:
DomesticForeign DomesticDomestic DomesticForeign:Weight

0.6263581 1.3684125 0.0009597
DomesticDomestic:Weight

0.0007069
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The first gives the difference in the intercepts and slopes for domestic cars
from foreign cars where the second gives the slopes and intercepts for both
types.

The / is another way of describing interactions. The for is a / x, where
a is a factor and x could be numeric, a factor, or a combination of things.
This model says fit the model described by x for each level of a. The
specification a/x - 1 is equivalent to

a + a:x - 1

in terms of parameterization.
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Prediction

It is easy to make predictions for new or hypothesized observations with the
predict function. The form of the function is predict(fit, newdata),
where fit is the result of the lm command and newdata is a dataframe
including all of the variables used in the fitting model

> newdata
Weight Domestic

1 2000 Foreign
2 3000 Domestic
3 4000 Foreign
4 2000 Domestic
5 3000 Foreign
6 4000 Domestic
> predict(weight.domestic.int.lm,newdata)

1 2 3 4 5 6
2.545835 3.489005 4.465312 2.782141 3.505573 4.195869
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And to exhibit that different parametrizations give the same fitted values

> predict(weight.domestic.int.lm,newdata)
1 2 3 4 5 6

2.545835 3.489005 4.465312 2.782141 3.505573 4.195869

> predict(weight.domestic.int2.lm,newdata)
1 2 3 4 5 6

2.545835 3.489005 4.465312 2.782141 3.505573 4.195869
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