
Programming in S - Part II

Statistics 135

Autumn 2005

Copyright c©2005 by Mark E. Irwin

Error Checking

When writing functions, it is usually a good idea to make sure the input
arguments are valid. For example, with the factorial functions shown before,
all are based on a single, integer being input.

facte <- function(x) {
if (length(x) > 1)
warning("x should be of length 1, only first component used.")

if (x[1] <= 0)
stop("x must be positive.")

return(gamma(x[1] + 1))
}

Error Checking 1

> facte(1:4)
[1] 1

Warning message: x should be of length 1, only first component
used. in: facte(1:4)

> facte(-2)
Error in facte(-2) : x must be positive.

The function warning will allow the function to continue with the
appropriate warning message printed and output returned.

However the function stop will terminate the function, yielding no output.

Error Checking 2

Printing Output with Functions

Sometimes it is useful to print intermediate calculations from within a
function, such as during debugging.

For example

testprint1 <- function(x) {
for(i in 1:x)
c(i, facte(1))

}

> testprint1(4)
>

In this case nothing is printed, even though the default action for the c
function is to print the value if the output is not assigned to a variable.
However while in a function, this will not happen.

Printing Output with Functions 3

To print information from within a function, you must explicitly do it. For
example

testprint2 <- function(x) {
for(i in 1:x)
print(c(i, facte(i)))

}

> testprint2(4)
[1] 1 1
[1] 2 2
[1] 3 6
[1] 4 24
>

Note that neither of these functions actually return anything. Usually not
a good thing to do, but not always. Doing something like this might be
useful for formatted output. For example, doing something like summary
does with a lm object. (Note: that summary.lm doesn’t work this way,
though it could.)

Printing Output with Functions 4

If you wish to format the output, the function cat is useful. For example

testprint3 <- function(x) {
for (i in 1:x)
cat("x = ", i, ", ", i, "! = ", facte(i), "\n", sep="")

}

> testprint3(4)
x = 1, 1! = 1
x = 2, 2! = 2
x = 3, 3! = 6
x = 4, 4! = 24
>

Printing Output with Functions 5

Recursive Functions

Another approach that can be useful is that of recursive functions. For
example, the factorial function can be written as

n! = n× (n− 1)!

This can be implemented by

factr <- function(n) {
if (n != trunc(n))
stop("n is not an integer")

if (n == 1) factr <- 1
else factr <- factr(n-1) * n

factr
}

Recursive Functions 6

> factr(4)
[1] 24

> factr(82)
[1] 4.753643e+122

Note that this approach is usually slow and memory-intensive. Each time
the function is called, a copy of the important information is made and
passed onto the new call. In some cases, the recursive approach may not
return an answer. Instead something like the following may happen.

> factr(83)
Error in factr(n - 1): evaluation nested too deeply: infinite
recursion / options(expressions=)?

This sort of problem is more severe in S-Plus than R. In problem occurs in
S-Plus with n = 83, but doesn’t occur in R until n = 1000 (at least on
my laptop).

Recursive Functions 7

The recursive approach does have its uses with intrinsically recursive
problems. For example how to list all possible subsets of size r from
n objects.

subsets <- function(n, r, v = 1:n) {
if (r <= 0) NULL
else if (r >= n) v[1:n] else
rbind(cbind(v[1], subsets(n - 1, r - 1, v[-1])),

subsets(n - 1, r, v[-1]))
}

> subsets(4,2)
[,1] [,2]

[1,] 1 2
[2,] 1 3
[3,] 1 4
[4,] 2 3
[5,] 2 4
[6,] 3 4

Recursive Functions 8

The idea behind this function is that n = r, there is only one possible
subset, the whole vector. Otherwise pick one element from from the set.
Then you need to look at all subsets with that element combined with
subsets of size r− 1 from the remaining n− 1 elements plus the subsets of
size r taken from the other n− 1 elements.

Note that this isn’t the best way to write a recursive function as if you
change the name, the function with break (subsets won’t exist anymore).
See pages 49-50 is S Programming by Venables and Ripley. A better
approach uses the Recall function.

Recursive Functions 9

Vectorized Functions

Standard S functions, such as sin, log, dnorm, etc have the property, that
if the first argument is a vector, the result is a vector. Note that a similar
result will also happen with matrices and higher level arrays.

For example, in R, try iris3. You’ll see that the result is a 3 dimensional
array, the same as iris3.

When designing your own functions, you should strive to do the same thing.
Often it is easy to do, as where possible, you should base your own functions
on the built in vectorized functions.

For example, probably the best version of the factorial function you could
write is

fact <- function(x) gamma(x+1)

In fact, Rs built in function factorial does exactly this. Since it uses
the built in function gamma, all of its built in error checking will be there.

Vectorized Functions 10

Also it is automatically vectorized. However, here is an example where the
structure of the output is the same as the input.

fact.vec <- function(x) {
size <- dim(x)
fact <- NULL
for (i in x)
fact <- c(fact, prod(1:i))

array(fact, dim=size)
}

> fact.vec(mat)
[,1] [,2] [,3] [,4]

[1,] 1 24 5040 3628800
[2,] 2 120 40320 39916800
[3,] 6 720 362880 479001600

Vectorized Functions 11

> factorial(mat)
[,1] [,2] [,3] [,4]

[1,] 1 24 5040 3628800
[2,] 2 120 40320 39916800
[3,] 6 720 362880 479001600

Vectorized Functions 12

Loops vs Vectorized Calculations

Where possible, you generally want to avoid using loops, particularly in
S-Plus. The situation isn’t quite as bad in R. The reason for this is similar
to why you don’t want to write recursive functions.

For example, lets look at the Fisher Iris data, getting summary statistics for
the different species and measurements

> meanmat <- matrix(0, ncol=3, nrow=4,
+ dimnames = list(c("Sepal L", "Sepal W", "Petal L", "Petal W"),
+ c("Setosa", "Versicolor", "Virginica")))

> for (i in 1:4)
+ for (j in 1:3)
+ meanmat[i,j] <- mean(iris3[,i,j])

Loops vs Vectorized Calculations 13

> meanmat
Setosa Versicolor Virginica

Sepal L 5.006 5.936 6.588
Sepal W 3.428 2.770 2.974
Petal L 1.462 4.260 5.552
Petal W 0.246 1.326 2.026

However this can be done much easier with apply

> apply(iris3, c(2,3), mean)
Setosa Versicolor Virginica

Sepal L. 5.006 5.936 6.588
Sepal W. 3.428 2.770 2.974
Petal L. 1.462 4.260 5.552
Petal W. 0.246 1.326 2.026

Loops vs Vectorized Calculations 14

The general form of apply is

apply(X, MARGIN, FUN, ...)

Arguments:

X: the array to be used.

MARGIN: a vector giving the subscripts which the function
will be applied over. ’1’ indicates rows, ’2’ indicates
columns, ’c(1,2)’ indicates rows and columns.

FUN: the function to be applied. In the case of functions
like ’+’, ’%*%’, etc., the function name must be quoted.

...: optional arguments to ’FUN’.

If you just want to average for each variable (over observations and species)
use the following

Loops vs Vectorized Calculations 15

> apply(iris3, 2, mean)
Sepal L. Sepal W. Petal L. Petal W.
5.843333 3.057333 3.758000 1.199333

An example where additional arguments are passed onto the function is

> apply(iris3, 2, mean, trim=0.1)
Sepal L. Sepal W. Petal L. Petal W.
5.808333 3.043333 3.760000 1.184167

where the 10% trimmed mean of each variable is calculated.

An advantage of vectorized calculations is that they are usually much faster.
If there is any looping to be done, it tends to occur in compiled c code, not in
interpreted S code. While I’m not sure where there are any implementations
of S that do this, but some processors allow for calculations to be done
at the vector level, not the item level, which can be much more efficient.
Vectorized calculation are also useful for parallel processing, as various pieces
of the calculations can be pass to different processors and reconstructed
later. This is harder to do when loops are involved.

Loops vs Vectorized Calculations 16

Note that for linear computations, such as the mean, using matrix
multiplication can be even more efficient. For example, instead of
apply(iris3, c(2,3), mean), the following could be used

> matrix(rep(1/50,50) %*% matrix(iris3, nrow=50),
+ nrow=4, dimnames = dimnames(iris3)[-1])

Setosa Versicolor Virginica
Sepal L. 5.006 5.936 6.588
Sepal W. 3.428 2.770 2.974
Petal L. 1.462 4.260 5.552
Petal W. 0.246 1.326 2.026

While more efficient, I’ll often use apply, since it is more readable. Also it
may take longer to figure out how to do it more efficiently than what you
get in improvement in calculation time.

Loops vs Vectorized Calculations 17

Example: Kernel Density Estimation

One approach to estimating densities of continuous distributions. Suppose
you have a data set taking values x1, x2, . . . , xn.

Swiss Fertility Rates

Fertility

D
en

si
ty

30 40 50 60 70 80 90 100

0.
00

0.
01

0.
02

0.
03

0.
04

The estimate is of the form

f̂σ(y) =
1
n

n∑

i=1

g(y|xi, σ)

where g is a density centered at x
with standard deviation σ. Usually g
is chosen to be Gaussian, though any
unimodel symmetric density could be
used.

Loops vs Vectorized Calculations 18

The choice of σ influences the smoothness of the estimates. Small σs will
give bumpy estimates and larger ones will give smoother estimates.

σ = 5

Fertility

D
en

si
ty

30 40 50 60 70 80 90

0.
00

0.
01

0.
02

0.
03

0.
04

σ = 0.5

Fertility

D
en

si
ty

30 40 50 60 70 80 90

0.
00

0.
01

0.
02

0.
03

0.
04

There are schemes for automatically picking σ. The built in function
density has a number of these schemes available.

Loops vs Vectorized Calculations 19

Lets create functions to implement this using a normal kernel, one
with loops and one vectorized. Note that S has a built in function
density that you would normally want to use. For comparing histograms
with kdes, in the trellis plotting function histogram, the panel function,
panel.densityplot will add the kernel density estimate to each panel.
As an aside, panel.mathdensity can be used to add the density from a
parametric distribution, such as the normal.

A version that involves looping is

kdeloop <- function(x, data, sigma=1) {
kde <- rep(0, length(x))
for (i in 1:length(x))
kde[i] <- mean(dnorm(x[i], data, sigma))

kde }

This function will calculate the density at each point in x, given data in the
vector data and smoothing parameter sigma.

Loops vs Vectorized Calculations 20

(Note: the originally posted version had an error in the

for (i in 1:length(x))

line. It was missing the i:, which would lead to the estimated density only
being calculated at the last component of x.)

A similar vectorized function is

kdevec <- function(x, data, sigma) {
xmat <- matrix(rep(x, length(data)), ncol=length(data))
dmat <- matrix(rep(data, length(x)), nrow=length(x), byrow=T)
den <- dnorm(xmat,dmat,sigma)
kde <- apply(den, 1, mean)
kde

}

This version of function creates matrices which allows every entry in x to be
matched with every entry in data (the xmat and dmat lines). The den line
evaluates the density for each x[i] with the mean set to data[j]. Finally
the kde line, averages the density values for each x[i].

Loops vs Vectorized Calculations 21

There is an easier way of implementing this idea with the outer function.
It allows for every combination of x[i] and y[j] to be evaluated in a
function f(x,y) and to be stored in z[i,j].

outer(X, Y, FUN="*", ...)

Arguments:

X: A vector or array.

Y: A vector or array.

FUN: a function to use on the outer products, it
may be a quoted string.

...: optional arguments to be passed to ’FUN’.

The output is an array with dimensions c(dim(X),dim(Y)).

Loops vs Vectorized Calculations 22

Thus the earlier function can be written much more compactly as

kdeouter <- function(x, data,sigma) {
den <- outer(x, data, FUN="dnorm", sd=sigma)
kde <- apply(den,1,mean)
list(x=x, y=den, bw=sigma, n=length(data))

}

The return of this version is closer to what density returns. It is also an
example of how to return multiple objects from a function.

Note that all three versions return the same estimated density function,
such is a slightly different manner.

Loops vs Vectorized Calculations 23

Back to apply type functions

In addition to apply, there are three similar functions for different data
structures

• tapply: This is useful for data that you want to summarize is in one
vector and label information is in one or more additional vectors. For
example, to get the sample variances for Sepal Width in the Fisher Iris
data for each species

> sepalw <- iris[,2]
> species <- iris[,5]
> tapply(sepalw,species,var)

Setosa Versicolor Virginica
0.14368980 0.09846939 0.10400408

Loops vs Vectorized Calculations 24

The general form for tapply is

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

Arguments:

X: an atomic object, typically a vector.

INDEX: list of factors, each of same length as ’X’.

FUN: the function to be applied. In the case of functions
like ’+’, ’%*%’, etc., the function name must be
quoted. If ’FUN’ is ’NULL’, tapply returns a vector
which can be used to subscript the multi-way array
’tapply’ normally produces.

...: optional arguments to ’FUN’.

Loops vs Vectorized Calculations 25

simplify: If ’FALSE’, ’tapply’ always returns an array of mode
’"list"’. If ’TRUE’ (the default), then if ’FUN’
always returns a scalar, ’tapply’ returns an array
with the mode of the scalar.

It is possible to use your own functions with tapply (and the other
apply like functions). They can be functions you have already created,
or they created in the function call.

> logrw <- log(crabs$RW)
> sp <- crabs$sp
> sex <- crabs$sex
>
> tapply(logrw, list(sex,sp),

function(x) {sqrt(var(x)/length(x))})
B O

F 0.03001332 0.02374343
M 0.02729349 0.02647192

Loops vs Vectorized Calculations 26

• lapply and sapply

These two functions are used with lists (& dataframes). The function
lapply will return its output as a list, whereas sapply will try to return,
if possible, a vector. The form of the functions are

lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

Arguments:

X: list or (atomic) vector to be used.

FUN: the function to be applied to each element of ’X’.
In the case of functions like ’+’, ’%*%’, etc., the
function name must be quoted.

...: optional arguments to ’FUN’.

Loops vs Vectorized Calculations 27

simplify: logical; should the result be simplified to a
vector or matrix if possible?

USE.NAMES: logical; if ’TRUE’ and if ’X’ is character, use
’X’ as ’names’ for the result unless it had names
already.

For example, the we can determine the type of variables in a dataframe
with the command

> lapply(cars93, class)
$Manu
[1] "factor"

$Model
[1] "factor"

$Type
[1] "factor"

Loops vs Vectorized Calculations 28

$MinPrice
[1] "numeric"

$MidPrice
[1] "numeric"

$MaxPrice
[1] "numeric"

$CityMPG
[1] "integer"

and so on

An example where both approaches can be used

> sapply(cars93, mean)
Manu Model Type MinPrice MidPrice
NA NA NA 17.1258065 19.5096774

MaxPrice CityMPG HighMPG AirBags DriveTra
21.8989247 22.3655914 29.0860215 0.8064516 0.9354839

Loops vs Vectorized Calculations 29

Cylinder EngSize Horse RPM EngRevMi
NA 2.6677419 143.8279570 5280.6451613 2332.2043011

Manual FuelTank Passeng Length Wheelbas
0.6559140 16.6645161 5.0860215 183.2043011 103.9462366

Width Uturn RearSeat Luggage Weight
69.3763441 38.9569892 NA NA 3072.9032258
Domestic HighFuel CityFuel CylinderO cylinder

NA 3.5414987 4.6992472 NA NA
domestic
0.5161290

Warning messages: (Deleted)

> lapply(cars93, mean)
$Manu
[1] NA

$Model
[1] NA

$Type
[1] NA

Loops vs Vectorized Calculations 30

$MinPrice
[1] 17.12581

$MidPrice
[1] 19.50968

$MaxPrice
[1] 21.89892

$CityMPG
[1] 22.36559

and so on again

Loops vs Vectorized Calculations 31

