Data Manipulation

Statistics 135

Autumn 2005

Copyright (©2005 by Mark E. Irwin

Reading Files on Lab Machines

When you want to read in data files, for example, on the lab computers,
you need to specify the full path name. The earlier examples, which were
run under a unix setup, were able to reuse relative path position to specify
the file.

For example, for an example | will be looking at later, needed the following
code

PROC IMPORT DATAFILE = ’F:\Autumn 2005\SAS\Shingles.txt’
DBMS = dlm OUT = shingles REPLACE;

This was being run from a USB memory key, which happened to be set to
drive F: on the PC | was using. It may be different on different machines.
I've seen it some times come up as E: or F: on my laptop.

Reading Files on Lab Machines 1

Data Manipulation

As we have seen before, it is easy to create new variables using standard
functions. For example, for the shingles data set all ready read in

Roofing Shingle Sales 43
19:46 Sunday, November 20, 2005

Obs sales promotion accounts brands potential
1 79.3 5.5 31 10 8
2 200.1 2.5 55 8 6
3 163.2 8 67 12 9
4 200.1 3 50 7 16

we can create a new variable value by

DATA shingles2;
set shingles;
value = sales * 51.25; /* assuming $51.25 per 1000 squares */

Data Manipulation 2

It is also possible to do conditional assignments inside a data set with the
IF-THEN statement. For example

DATA shingles2; /* part of a more complex data statement */
set shingles;
IF brands < 10 THEN compete = "low";

This will create a new variable compete which will take the value low if
brands < 10 and . (missing) if brands >= 10.

A better approach probably would use an IF-THEN/ELSE statement. For
example

DATA shingles2; /* part of a more complex data statement */
set shingles;
IF brands < 10 THEN compete = "low";
ELSE compete = "hi";

In this case, compete will have a value for every observation.

Data Manipulation 3

Note that more than one command can be run within each part of an
IF-THEN statement. In that case, the structure needs to change slightly to

IF condition THEN DO;
actionl;
action2;
END;
ELSE DO;
actionl;
action2;

END;
Of course you can have a different number of steps in each block.

In addition, you can extend the IF-THEN/ELSE statement can be extended
to more conditions with the use of ELSE IF.

Data Manipulation 4

For example

IF potential > 15 then potentcat = "High";
ELSE IF potential < 6 then potentcat = "Low";
ELSE potentcat = "Moderate";

This creates a string variable with 3 different values depending, one for each
different range of potential considered.

You can include as many ELSE IF statements as needed, though this may
not be the best way to do it. If there are many options, SELECT maybe
preferable. One example is

SELECT;
WHEN (O LE potential LT 5) grade = O;
WHEN (5 LE potential LT 10) grade = 1;
WHEN (10 LE potential LT 15) grade = 2;
WHEN (15 LE potential LT 20) grade = 3
WHEN (potential GE 20) grade = 4;

END;

)

Data Manipulation 5

The conditional in the previous SELECT statement is a section way of
defining conditionals. Conditionals can be defined using the operators

Symbolic Mnemonic Meaning

= EQ equals

“=, "= or —= NE not equal

> GT greater than

< LT less than

>= GE greater than or equal
<= LE less than or equal

In addition condition can be strung together with AND or OR with

Symbolic Mnemonic Meaning
& AND all comparisons must be true
| or ! OR only one comparison must be true

Any combination of Symbolic and Mnemonic may be used. However |
suggest that you have some level of consistency in your own code.

Data Manipulation 6

You need to be careful when dealing with conditions like
IF potential <= b5 THEN grade = O;

This would have any observation where potential is missing having grade
= 0, which would probably be undesirable. Instead the following might be
better

IF 0 <= potential <= 5 THEN grade = 0;

There is one other type of comparison available, the IN operator. IN
compares the value of a variable to a list of possible values. For example

IF grade in (0, 1) THEN pass = "F";
ELSE pass = "T";

Data Manipulation 7

There are a few automatic variables available in SAS. Two that are useful
are

e _N_: This indicates the number of times SAShas looped through a DATA
step. Note that this isn't necessarily the same as the observation number
as the dataset might have been subsetted (coming next).

One example of how it can be used is the following

IF _N_ < 27 THEN training = "TRUE";
ELSE training = "FALSE";

e _ERROR_: This variable takes the value 1 if there is a data error for that
observation and 0 if there isn't. Things that can cause errors include
invalid data (assigning characters to a numeric variable), division by 0,
or illegal arguments to functions (like sqrt(-1)).

Data Manipulation 8

When working with data, sometimes you will want to remove variables from
a dataset. This can be done in a DATA as follows

DATA dropdata;
SET shingle?2;
DROP grade pass;

This would remove the variables grade and pass from the dataset and
write the rest to dropdata.

You can also state which variables you would like to keep. This could be
done as follows by

DATA keepdata;
SET shingleZ2;
KEEP sales compete potential;

In this case only 3 variables will be written to the new dataset.

Data Manipulation 9

Subsetting Your Data

As we have seen before, it is often desirable to only look at a subset of
your data. This can be easily accomplished in a DATA step with an IF
statement. For example, suppose we only wanted the first 5 observations
from the dataset. One way of doing this is

DATA shingles3;
SET shingles2;
IF _N_ < 6; /* ok since _N_ is a integer starting at 1 */

There is an equivalent approach that will also work

DATA shingles 4;
SET shingles2;
IF _N_ > 5 THEN DELETE;

Subsetting Your Data 10

When deciding which version to use, generally you will want to pick the
form that as the easier to write out.

There are other ways to subset your data. We will see these later on as
they work better in some PROCs instead of creating new datasets.

We can see that the two approaches lead to the same answer with the code

PROC PRINT DATA = shingles3;
TITLE ’shingles3 version’;

PROC PRINT DATA = shingles4;
TITLE ’shingles4 version’;

Subsetting Your Data 11

shingles3 version

Obs sales
79.3
200.1
163.2
200.1

146

O P W N -

promotion
5.5

2.5

8

3
3

shingles4 version

Obs sales
79.3
200.1
163.2
200.1

146

O P W N -

promotion
5.5

2.5

8

3

3

00:10 Monday, November 21, 2005 10

accounts
31
55
67
50
38

brands
10

8

12

7

8

potential
3

6

9

16

15

00:10 Monday, November 21, 2005 11

accounts
31
55
67
50
38

brands
10

8

12

7

8

potential
8

6

9

16

15

Subsetting Your Data

SORTING

So procedures in SAS required the data to be sorted. For example, suppose
we wanted to sort the data by sales. We could do this by

PROC SORT DATA = shingles2 OUT = shinglesb;
BY sales;

This will create a new dataset shinglesb5 where the observations will be
ordered in increasing order of sales

Increasing in Sales 00:10 Monday, November 21, 2005 27

Obs sales promotion accounts brands potential
1 30.9 8 30 12 38
2 4r7.7 6.1 38 13 10
3 48 7.5 46 14 3
4 64.7 5.8 24 10 38
5 73.4 6.7 53 13 5

SORTING 13

In this output, only the variables sales, promotion, accounts, brands,
and potential as | restricted which variables will be printed out with the
VAR statement

PROC PRINT DATA = shinglesb;
TITLE ’Increasing in Sales’;
VAR sales promotion accounts brands potential,;

The VAR statement indicates which variables are to be printed.

In you want to sort in decreasing order, add the DESCENDING option to the
BY statement. For example

PROC SORT DATA = shingles2;
BY DESCENDING sales;

This will overwrite the dataset shingles2 by listing the observations by
decreasing sales. It will overwrite the dataset since a OUT option was not
set.

SORTING 14

Decreasing in Sales 00:10 Monday, November 21, 2005 28

Obs sales promotion accounts brands potential
1 339.4 6.5 73 5 16
2 331.2 5.6 71 4 9
3 295.8 5.4 70 6 3
4 291.9 9 56 5 10
5 291.5 5.3 70 7 10

SORTING 15

Using SAS Procedures

The common structure for SASPROC statements is the following

PROC whatever <options>;
commandl;
command?;

commandn ;
RUN;

Now there can be great flexibility in how these are combined. All that is
required is PROC and the procedure name.

Thus
PROC PRINT;

is a valid command. This will print the current dataset. Usually there will
be more to it.

Using SAS Procedures 16

As an example of the possibilities available, lets look at PROC UNIVARIATE

PROC UNIVARIATE < options > ;
BY variables ;
CLASS variable-1 <(v-options)> < variable-2 <(v-options)> >
< / KEYLEVEL= valuel | (valuel value2) >;
FREQ variable ;
HISTOGRAM < variables > < / options > ;
ID variables ;
INSET keyword-list < / options > ;
OUTPUT < 0UT=SAS-data-set >
< keywordl=names. . .keywordk=names >
< percentile-options >;
PROBPLOT < variables > < / options > ;
QQPLOT < variables > < / options > ;
VAR variables ;
WEIGHT variable ;

Using SAS Procedures 17

So we can see, for many PROCs there are a wide range of options available.
One that is always available is DATA = . This says which dataset is to be
used in the current PROC. If it is not given, SAS will use the most recent
dataset.

Another options that is often available, but not always, is the OUT = option.
This indicates the name of the dataset that should be written out as the
result of the PROC. For example, we saw it with PROC SORT. However it
doesn't exist for PROC REG, one approach to regression in SAS.

There are a number of common commands that are available with all
(almost all?) PROCs. These include

Using SAS Procedures 18

e BY: This command tells SAS to perform a separate analysis for each
level of a desired variable (or variables). For example the code

PROC UNIVARIATE DATA = shingles2;
BY potentcat;

VAR promotion brands;

will give separate analyses of promotion and brands for each level of
potentcat.

However for this to work, the dataset must be sorted by the BY variables.

In fact, the only PROC to require the BY command is PROC SORT.

Using SAS Procedures 19

e TITLE and FOOTNOTE: We've seen TITLE before. FOOTNOTE is the
opposite of TITLE; it prints at the end of each page of output.

These can be put anywhere in your code, but generally you want to put
them PROC where you change them. If you don’'t change them, they will
stay active.

It is possible to have up to 10 TITLE and FOOTNOTE active at a time.
This is done by adding numbers to the keywords, e.g.

TITLE2 ’Here’’s a second title’;
FOOTNOTE3 "Here’s another footnote";

Note that these two examples show the two ways of including a ’ into
text.
If you wish to get rid other either of name, a null statement will eliminate

them

TITLE;
FOOTNOTE;

Using SAS Procedures 20

e LABEL: This allows for more descriptive labels to be given to variable
names. For example

LABEL sales = ’Shingle Sales’
LABEL potentcat = ’Sales Potential Category’;

If a label is used in a DATA step, it becomes part of the data set. However
if it is used in a PROC, it is only active in that PROC.

Using SAS Procedures 21

