
Maximum Likelihood in SAS

Statistics 135

Autumn 2005

Copyright c©2005 by Mark E. Irwin

Maximum Likelihood Estimation

Lets assume that that x1, x2, . . . , xn are a random sample from a population
with a distribution described by the density (or pmf if discrete) f(xi|θ).
The parameter θ might be a vector θ = (θ1, θ2, . . . , θp).

Then the likelihood function is

L(θ) =
n∏

i=1

f(xi|θ)

The maximum likelihood estimate (MLE) of θ is

θ̂ = arg sup L(θ)

i.e. the value of θ that maximizes the likelihood function. One way of
thinking of the MLE is that its the value of the parameter that is most
consistent with the data.

Maximum Likelihood Estimation 1

One approach to maximizing the likelihood is via calculus by solving the
equations

∂L(θ)
∂θ1

= 0,
∂L(θ)
∂θ2

= 0, . . . ,
∂L(θ)
∂θp

= 0

with respect to the parameter θ.

Note that when determining MLEs, it is usually easier to work with the log
likelihood function

l(θ) = log L(θ) =
n∑

i=1

log f(xi|θ)

It has the same optimum since log is an increasing function and it is easier to
work with since derivatives of sums are usually much nicer than derivatives
of products.

Maximum Likelihood Estimation 2

Thus we can solve the score equations

∂l(θ)
∂θ1

=
n∑

i=1

∂ log f(xi|θ)
∂θ1

= 0

∂l(θ)
∂θ2

=
n∑

i=1

∂ log f(xi|θ)
∂θ2

= 0

. . .

∂l(θ)
∂θp

=
n∑

i=1

∂ log f(xi|θ)
∂θp

= 0

for θ instead.

Maximum Likelihood Estimation 3

Key Properties of MLEs

1. For large n, the sampling distribution of an MLE is approximately normal.

2. For large n, MLEs are nearly unbiased with a variance smaller than any
other estimator.

3. If θ̂ is the MLE of θ, then g(θ̂) is the MLE of g(θ), for any “nice”
function g(·). (Transformations of MLEs are MLEs - Invariance property.

Maximum Likelihood Estimation 4

Poisson Example

Suppose we observe the number of alpha particle emissions of Carbon-14
that are counted by a Geiger counter per second. We wish to model the
data of 20 counts using a Poisson distribution. What is the MLE of the
parameter of the distribution? The data are

6 5 8 8 13 11 7 8 7 10
8 4 3 12 5 11 9 15 12 6

Note that
∑

xi = 168. The pmf for a Poisson random variable with mean
λ is

f(x|λ) =
λxe−λ

x!
, x = 0, 1, 2, . . .

Poisson Example 5

It can be shown that the MLE, λ̂ satisfies

λ̂ = x̄ =
1
n

n∑

i=1

xi

So for the example λ̂ = 8.4

Poisson Example 6

Truncated Poisson Example

Instead of modeling the data as a Poisson distribution, assume that in this
experiment it is impossible to observe zero counts. So instead will be model
the data with a truncated Poisson distribution with pmf

f(x|λ) =
λxe−λ

(1− e−λ)x!
, x = 1, 2, . . .

Note that λ is not the mean of this distribution. It is in fact

E[X] =
λ

1− e−λ

What is the MLE of λ?

It can be shown that λ̂ does not have a closed form solution in this problem.

Truncated Poisson Example 7

In fact, the MLE satisfies

r(λ̂) = λ̂− x̄(1− e−λ̂) = 0

where

r(λ) = λ− x̄(1− e−λ)

Note that

r(λ) = −λ(1− e−λ)
dl(λ)
dλ

Since −λ(1− e−λ) 6= 0 for λ > 0 (the range we are interested in) r(λ) and
dl(λ)
dλ must have the roots so we can solve either.

Lets use SAS to find the solution to r(λ̂) = λ̂− x̄(1− e−λ̂) = 0

Truncated Poisson Example 8

Grid Search in SAS

A brute for technique to find a value of λ which approximately solves this
equation.

For different values of λ we will calculate r(λ). Then pick the value of λ
which gives r(λ) closest to 0.

DATA grid_search;
DO i = 1 to 1000;
lambda = i/100;
abs_r_lambda = ABS(lambda - (168/20) * (1 - EXP(-lambda)));
OUTPUT;

END;
DROP i;

PROC PRINT DATA=truncated_poisson NOOBS;

RUN;

Grid Search in SAS 9

This code creates a data set with variables lambda (taking values from 0.01
to 10 by 0.01) and abs_r_lambda, the values of |r(λ)| for the values of
lambda in the dataset.

The OUTPUT in the DO loop tells SAS to write out the values created there.
If this is omitted, no output will be stored from the DO loop.

Grid Evaluation 16:49 Tuesday, November 22, 2005 406

abs_r_
lambda lambda

0.01 0.07358
0.02 0.14633
0.03 0.21826
0.04 0.28937
0.05 0.35967

and so on

Grid Search in SAS 10

Now lets sort the data from smallest to largest of |r(λ)|.

PROC SORT DATA = grid_search OUT = grid_sort_sorted;
BY abs_r_lambda;

PROC PRINT DATA = grid_sort_sorted NOOBS;

RUN;

Sorted Grid Values 16:49 Tuesday, November 22, 2005 426

abs_r_
lambda lambda

8.40 0.00189
8.39 0.00809
8.41 0.01187
8.38 0.01807
8.42 0.02185
8.37 0.02805

...

Grid Search in SAS 11

The first row of this resulting dataset contains the MLE as calculated by
this grid search algorithm. Now lets create a final version of the data which
just this row

DATA grid_mle;
SET grid_search_sorted;
IF (_N_ EQ 1);

* Print out the approximate MLE.;

PROC PRINT DATA = grid_mle NOOBS;

RUN;

MLE of Lambda by Grid Search 16:49 Tuesday, November 22, 2005 446

abs_r_
lambda lambda

8.4 .001888886

Grid Search in SAS 12

Newton-Raphson in SAS

Another approach to finding the roots of a function r(λ). In this method,
we start with an initial value λ0 and then the next guess is calculated by

λ1 = λ0 − r(λ0)
r′(λ0)

where r′(λ) is the first derivative of r(λ). We iterate this scheme until we
are close to the root

λn = λ0 − r(λ0)
r′(λ0)

; n = 2, 3, . . .

In this truncated Poisson example

r(λ) = λ− x̄(1− e−λ)

r′(λ) = 1− x̄(1− e−λ)

Newton-Raphson in SAS 13

Lets start with a simple version of this algorithm that iterates the scheme
10 times.

DATA newton_simple;

/* a good starting guess for lambda is the sample mean */
lambda = (168/20);

/* set the previous value of lambda to 0 */

previous_lambda = 0;

/* these variables store the current value of r(lambda)
and the derivative r(lambda) */

r_lambda = 0;
r_primed_lambda = 0;

Newton-Raphson in SAS 14

/* set the format of the variables - number are displayed
up to 12 characters long, with 10 decimal places. */

FORMAT lambda 12.10 previous_lambda 12.10 r_lambda 12.10
r_primed_lambda 12.10;

/* now update the Newton-Raphson step 10 times */

DO iteration = 1 to 10;
r_lambda = (lambda - (168/20) * (1 - EXP(-lambda)));
r_primed_lambda = (1 - (168/20) * EXP(-lambda));
previous_lambda = lambda;
lambda = lambda - r_lambda/r_primed_lambda;
OUTPUT;

END;

Newton-Raphson in SAS 15

/* Print out the resulting dataset */

PROC PRINT DATA=newton_simple NOOBS;
ID iteration previous_lambda;
TITLE ’MLE of Lambda by Newton-Raphson - Simple Approach’;

RUN;

MLE of Lambda by Newton-Raphson - Simple Approach 447
16:49 Tuesday, November 22, 2005

previous_ r_primed_
iteration lambda lambda r_lambda lambda

1 8.4000000000 8.3981075398 0.0018888855 0.9981111145
2 8.3981075398 8.3981075364 0.0000000034 0.9981075365
3 8.3981075364 8.3981075364 0.0000000000 0.9981075364
4 8.3981075364 8.3981075364 0.0000000000 0.9981075364
5 8.3981075364 8.3981075364 0.0000000000 0.9981075364
6 8.3981075364 8.3981075364 0.0000000000 0.9981075364
7 8.3981075364 8.3981075364 0.0000000000 0.9981075364

Newton-Raphson in SAS 16

8 8.3981075364 8.3981075364 0.0000000000 0.9981075364
9 8.3981075364 8.3981075364 0.0000000000 0.9981075364

10 8.3981075364 8.3981075364 0.0000000000 0.9981075364

One problem with this scheme is that it runs much longer that it needs to.
The value of λ̂ stabilizes after a couple of steps. Lets modify the scheme to
allow it to stop early.

%LET meanx = (168/20); /* A macro variable */
%LET maxiter = 10;
%LET converge = 1e-8;

DATA newton_better;

/* Initialize Newton scheme */
lambda = &meanx;
previous_lambda = 0;
r_lambda = 0;
r_primed_lambda = 0;
iteration = 1;

Newton-Raphson in SAS 17

/* Set formating */

FORMAT lambda 12.10 previous_lambda 12.10 r_lambda 12.10
r_primed_lambda 12.10;

DO WHILE ((ABS(lambda-previous_lambda) > &converge) &
(iteration < &maxiter));

r_lambda = (lambda - &meanx * (1 - EXP(-lambda)));
r_primed_lambda = (1 - &meanx * EXP(-lambda));
previous_lambda = lambda;
lambda = lambda - r_lambda/r_primed_lambda;
OUTPUT;
iteration = iteration + 1;

END;

PROC PRINT DATA=newton_better NOOBS;
ID iteration previous_lambda;
TITLE ’MLE of Lambda by Newton-Raphson - Better Approach’;

Newton-Raphson in SAS 18

MLE of Lambda by Newton-Raphson - Better Approach 448
16:49 Tuesday, November 22, 2005

previous_ r_primed_
iteration lambda lambda r_lambda lambda

1 8.4000000000 8.3981075398 0.0018888855 0.9981111145
2 8.3981075398 8.3981075364 0.0000000034 0.9981075365

Newton-Raphson in SAS 19

