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Nonparametric Regression

Reference: Hastie T, Tibshirani R, Friedman J (2001). The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.

In the regression type procedures discussed so far, the form of the regression
function has been specified. For example, we might use

y = β0 + β1x + β2x
2 + β3x

3 + ε

a cubic polynomial.

However in some situations we don’t have enough information to make an
assumption like this, or we don’t want to. Instead we might want to only
assume

y = f(x) + ε
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With some smoothness assumptions on f(x), such as continuity of the
regression function its derivatives.

A common assumption that is used is that f(x), f ′(x), and f ′′(x) are all
continuous.

So we would like to find an estimate of f(x) based on the data.

Nonparametric Regression 2



Example: Battery Voltage Drop

The battery voltage drop in a guided missile motor was observed over
the first 20 seconds of the launch. The data was collected to develop a
digital-analog simulation model of the missile.
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Lets look at a cubic fit of this data.

The plots of the fits and the residuals from this model suggests that this is
not a good model
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However the quartic model

y = β0 + β1x + β2x
2 + β3x

3 + β4x
4 + ε

seems reasonable based on the the following two plots.
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Smoothing Splines

Instead of using the quartic model, lets investigate a cubic smoothing spline.
These come considering the following problem: among all functions f(x)
with 2 continuous derivatives minimize the penalized residual sum of squares

RSS(f, λ) =
n∑

i=1

(yi − f(xi))2 + λ

∫ b

a

(f ′′(t))2dt

where λ is a fixed smoothing parameter. The first term measures the
closeness of the data where the second term penalizes the curvature of the
function, and λ establishes the tradeoff between the two. The effect ranges
from

• λ = 0: f can be any function that interpolates the data

• λ = ∞: the least squares straight line fit, since no second derivative can
be tolerated.
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So the resulting estimates may range from very rough to very smooth.

Even though the criterion is defined on an infinite-dimensional function
space (a Sobolov space of functions for which the second term is defined),
it ends up it has an explicit, finite-dimentional unique minimizer.

The optimizer is a natural cubic spline with knots at the unique values of
xi, i = 1, . . . , n. This is a piecewise cubic polynomial.

Since the solution is a natural spline, we can write it as

f(x) =
n∑

j=1

Nj(x)θj

where the Nj(x) are an n-dimensional set of basis functions.
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Thus the criterion thus reduces to

RSS(θ, λ) = (y −Nθ)T (y −Nθ) + λθTΩNθ

where {N}ij = Nj(xi) and

{ΩN}jk =
∫

N ′′
j (t)N ′′

k (t)dt

It is possible to show that the solution is

θ̂ = (NTN + λΩN)−1NTy

To see the effect of the choice of λ, lets look at a couple of fits generated
by SAS. The first has lambda chosen by Generalized Cross Validation and
the second with a fixed lambda.
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Generalized Cross Validation is an approach to having the data pick the
smoothing parameter. It looks at the bias and variance of prediction and
tries to minimize of the two of these. (It has a similar feel to Cp for model
selection.)

In SAS to specify the amount of smoothness, you don’t specify λ but
instead a degrees of freedom parameter. This is based on the fact that the
fitted values satisfy

f̂ = N(NTN + λΩN)−1NTy

= Sλy

i.e. the fits are a linear combination of the ys

By analogy with linear regression, the degrees of freedom for a smoothing
spline can be defined by

dfλ = trace(Sλ)
This idea can be extended to other nonparametric regression procedures
which is why SAS does it this way.
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The relationship between λ and dfλ is problem specific but only depends on
the xs.

A SAS approach for fitting is with PROC GAM, the procedure for fitting
Generalized Additive Models.

The code for fitting

PROC GAM DATA = missile2 ;
MODEL Voltage = SPLINE(Time) / METHOD = GCV ;
OUTPUT OUT = spline PREDICTED RESIDUAL;

PROC GAM DATA = missile2 ;
MODEL Voltage = SPLINE(Time, DF=30) ;
OUTPUT OUT = spline2 PREDICTED RESIDUAL;

If DF is not defined and METHOD = GCV is not used, DF=4 is used. The
OUTPUT options are included to generate the plots. They are not needed to
run the procedure. The output from GAM is

Smoothing Splines 14



The GAM Procedure
Dependent Variable: Voltage
Smoothing Model Component(s): spline(Time)

Summary of Input Data Set

Number of Observations 41
Number of Missing Observations 0
Distribution Gaussian
Link Function Identity

Iteration Summary and Fit Statistics

Final Number of Backfitting Iterations 2
Final Backfitting Criterion 0
The Deviance of the Final Estimate 2.0316861891

The local score algorithm converged.
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Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 9.51111 0.08013 118.69 <.0001
Linear(Time) 0.18113 0.00690 26.26 <.0001

Smoothing Model Analysis
Fit Summary for Smoothing Components

Num
Smoothing Unique

Component Parameter DF GCV Obs
Spline(Time) 0.887627 9.233560 0.094013 41

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq
Spline(Time) 9.23356 212.495030 3113.2861 <.0001
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Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 9.51111 0.06099 155.95 <.0001
Linear(Time) 0.18113 0.00525 34.51 <.0001

Smoothing Model Analysis
Fit Summary for Smoothing Components

Num
Smoothing Unique

Component Parameter DF GCV Obs
Spline(Time) 0.070124 29.000000 0.162103 41

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq
Spline(Time) 29.00000 214.131342 5415.9193 <.0001
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Note that SAS removes the linear trend before fitting the spline which takes
one degree of freedom. This is why the second example has 29, not 30
degrees of freedom.

PROC GAM will do many analyses. In addition to using smoothing splines, it
will also do loess fits as well.

This can be done by

PROC GAM DATA = missile2 ;
MODEL Voltage = LOESS(Time) / METHOD = GCV ;
OUTPUT OUT = loess PREDICTED RESIDUAL;

If you wish to set the smoothness via DF, it works the same way as with
SPLINE.
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Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 11.32244 0.03984 284.18 <.0001

Smoothing Model Analysis
Fit Summary for Smoothing Components

Num
Smoothing Unique

Component Parameter DF GCV Obs
Loess(Time) 0.158537 9.566316 0.002465 41

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq
Loess(Time) 9.56632 259.626796 3989.0744 <.0001
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The fits in this case are similar to the spline fits
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Note that this procedure is for Generalized Additive Models. The Generalized
means the same thing as in Generalized Linear Models. It is possible to
assume that the conditional distribution of the response variable given the
predictors doesn’t have to be normal. The option DIST of the MODEL
statement allows for GAUSSIAN (default), BINARY, BINOMIAL, GAMMA,
IGAUSSIAN, and POISSON distributions to be used. In all cases, the
canonical link is used. Not being able to use non canonical links in this case
should not be a problem.
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