
Input/Output
Data Frames

Statistics 135

Autumn 2005

Copyright c©2005 by Mark E. Irwin

Input/Output

Importing text files

• Rectangular (n rows, c columns)

Usually you want to use read.table

read.table(file, header = FALSE, sep = "", quote = "\"’",
dec = ".", row.names, col.names, as.is = FALSE,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE,
fill = !blank.lines.skip, strip.white = FALSE,
blank.lines.skip = TRUE, comment.char = "#")

The arguments you normally are going to want to deal with are file,
header, and sep.

Input/Output 1

file:

The name of the file to be read in

header:

a logical value indicating whether the file contains the names of the
variables as its first line. If missing, the value is determined from
the file format: ’header’ is set to ’TRUE’ if and only if the first row
contains one fewer field than the number of columns.

sep:

the field separator character. Values on each line of the file
are separated by this character. If ’sep = ""’ (the default for
read.table) the separator is ”white space”, that is one or more
spaces, tabs, newlines or carriage returns.

An example use of this function was seen during introductory example
on S.

cars93.df <- read.table("93cars.txt", header=T, row.names=NULL)

Input/Output 2

Other similar functions are read.csv or read.csv2 (comma separated
values) and read.delim or read.delim (tab delimited field) (as
defaults)

Each of these functions produces a data frame, a special type of list.
The resulting data frame consists of c vectors, each of length n.

• Text, but arbitrary structure

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",
quote = if(identical(sep, "\n")) "" else "’\"",
dec = ".", skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, fill = FALSE, strip.white = FALSE,
quiet = FALSE, blank.lines.skip = TRUE,
multi.line = TRUE, comment.char = "",
allowEscapes = TRUE)

The important parameters are file, what, sep, and flush.

Input/Output 3

what:

the type of ’what’ gives the type of data to be read. If ’what’ is
a list, it is assumed that the lines of the data file are records each
containing ’length(what)’ items (”fields”). The supported types are
’logical’, ’integer’, ’numeric’, ’complex’, ’character’, ’raw’ and ’list’:
’list’ values should have elements which are one of the first six types
listed or ’NULL’.

sep:

by default, scan expects to read white-space delimited input fields.
Alternatively, ’sep’ can be used to specify a character which delimits
fields. A field is always delimited by an end-of-line marker unless it
is quoted.
If specified this should be the empty character string (the default)
or ’NULL’ or a character string containing just one single-byte
character.

Input/Output 4

flush:

logical: if ’TRUE’, ’scan’ will flush to the end of the line after reading
the last of the fields requested. This allows putting comments after
the last field, but precludes putting more that one record on a line.

Importing non-text files

With the foreign package, files from other statistic packages. These
packages include S-Plus, SAS (SAS transport files), SPSS, Minitab
(Minitab portable worksheets), Stata, Systat, and EpiInfo.

For information on these routines, and other Imput/Output routines, see
the R Data Input/Output pdf file, available under the Help menu in R.

Importing Excel files

Best approach – don’t do it in R. Convert the data you want in Excel
into either a CSV file or a tab delimited file and read in with read.table,
read.csv, or read.delim

Input/Output 5

Exporting

Usually the best approach is to export the data you want into a text
format (CVS, space, or tab delimited). This can be done with the function
write.table, write.csv, or write.csv

write.table(x, file = "", append = FALSE, quote = TRUE,
sep = " ", eol = "\n", na = "NA", dec = ".",
row.names = TRUE, col.names = TRUE,
qmethod = c("escape", "double"))

The important options are x, file, sep, and quote

x:

the object to be written, preferably a matrix or data frame. If not, it
is attempted to coerce ’x’ to a data frame.

Input/Output 6

quote:

a logical value or a numeric vector. If ’TRUE’, any character or factor
columns will be surrounded by double quotes. If a numeric vector,
its elements are taken as the indices of the columns to quote. In
both cases, row and column names are quoted if they are written. If
’FALSE’, nothing is quoted.

An example is

write.table(cars.df,"cars.txt",sep="\t")
This will write the data frame cars.df into the file cars.txt (which is in
the same directory as the .Rdata file) as a tab delimited file. The first few
lines look like

Input/Output 7

"Manu" "Model" "Cylinder" "Type" "EngSize" "Weight" "CityMPG" "HighMPG" "CityFuel" "HighFuel"
"1" "Acura" "Integra" "4" "Small" 1.8 2705 25 31 4 3.2258064516129
"2" "Acura" "Legend" "6" "Midsize" 3.2 3560 18 25 5.55555555555556 4
"3" "Audi" "90" "6" "Compact" 2.8 3375 20 26 5 3.84615384615385
"4" "Audi" "100" "6" "Midsize" 2.8 3405 19 26 5.26315789473684 3.84615384615385
"5" "BMW" "535i" "4" "Midsize" 3.5 3640 22 30 4.54545454545455 3.33333333333333

Personally I prefer to set quote=F and set sep="\t" as it tends to be easier
to read the file into other programs like Excel. You may need to bit careful
if character strings may contain tabs (which is the reason for sep="\t").
Also if there aren’t informative row names, the option row.names=F is
usually desirable.

Input/Output 8

If you need to export data in a format that doesn’t fit into an n row by c
column format, use the write function instead.

write(x, file = "data",
ncolumns = if(is.character(x)) 1 else 5,
append = FALSE)

Input/Output 9

Data Frames

As mentioned before, a data frame is a special type of list. When dealing
with data, it is often the most useful way of storing your data. There are a
number of reasons for this

• Keeps a data set together in a single object

• It is the expected input for many modeling functions

• Great flexibility. Components can be accessed by a number of different
ways.

> test.df <- data.frame(norm=rnorm(5,0,2), chi2=rchisq(5,2),
+ let=c("a","b","c","d","e"))

> names(test.df)
[1] "norm" "chi2" "let"

Data Frames 10

> test.df
norm chi2 let

1 -0.8376633 0.2120354 a
2 -1.2233754 5.3120881 b
3 -2.1004727 2.2560415 c
4 1.8781837 1.8405489 d
5 -0.8908000 0.2286858 e

Since a data frame is also a list, the standard approach for accessing
components of a list will work

> test.df$norm
[1] -0.8376633 -1.2233754 -2.1004727 1.8781837 -0.8908000

In addition, due to the rectangular structure, components can also be
accessed as they are a matrix

> test.df[,1]
[1] -0.8376633 -1.2233754 -2.1004727 1.8781837 -0.8908000

Data Frames 11

> test.df[,"norm"]
[1] -0.8376633 -1.2233754 -2.1004727 1.8781837 -0.8908000

> test.df[1:2,]
norm chi2 let

1 -0.8376633 0.2120354 a
2 -1.2233754 5.3120881 b

Attaching a data frame

In a normal R session, there are more objects available than what is in the
.Rdata. These include required packages loaded at startup plus optional
packages and data frames. The current search path can be shown with the
search function

> search()
[1] ".GlobalEnv" "package:RWinEdt" "package:methods"
[4] "package:stats" "package:graphics" "package:grDevices"

Data Frames 12

[7] "package:utils" "package:datasets" "Autoloads"
[10] "package:base"

By adding a data frame to the search path it can be easier to access the
variables in the data frame. The data frame can be added with the attach
function

attach(what, pos = 2, name = deparse(substitute(what)))

Arguments:

what: "database". This may currently be a ’data.frame’ or
’list’ or a R data file created with ’save’.

pos: integer specifying position in ’search()’ where to
attach.

name: alternative way to specify the database to be attached.

Note that strictly, the data frame isn’t attach, but a copy is made and

Data Frames 13

added to the search path.

> chi2
Error: Object "chi2" not found

> attach(test.df)

> search()
[1] ".GlobalEnv" "test.df" "package:RWinEdt"
[4] "package:methods" "package:stats" "package:graphics"
[7] "package:grDevices" "package:utils" "package:datasets"
[10] "Autoloads" "package:base"

> chi2
[1] 0.2120354 5.3120881 2.2560415 1.8405489 0.2286858

Data Frames 14

> ls() # objects in the first element of the search path
[1] "cars.df" "cars93" "cityfuel.lm" "cityfuelt.lm"
[5] "citympg.lm" "data" "example.l" "ind"
[9] "last.warning"

> chi2 <- chi2 ^ 2
> ls()

[1] "cars.df" "cars93" "chi2" "cityfuel.lm"
[5] "cityfuelt.lm" "citympg.lm" "data" "example.l"
[9] "ind" "last.warning"

> chi2
[1] 0.04495900 28.21828025 5.08972343 3.38762027 0.05229717

> test.df$chi2
[1] 0.2120354 5.3120881 2.2560415 1.8405489 0.2286858

Data Frames 15

Note that when assignments like the previous are done, they are put in the
.GlobalEnv (position 1). They do not replace objects later in the search
path. If you wish to replace objects later in the search path, you need to
use the assign function or the <<- operator.

When multiple objects have the search path, the one highest in the search
path is the one accessed.

If you need to access an object in a particular location of the search path
use the get function

> chi2
[1] 0.04495900 28.21828025 5.08972343 3.38762027 0.05229717

> get("chi2",2)
[1] 0.2120354 5.3120881 2.2560415 1.8405489 0.2286858

Data Frames 16

To remove an environment from the search path, use the detach function

detach(name, pos = 2, version)

If the call is done by detach(n), where n is a number, the nth item from
the search path is deleted.

Note that if items are altered in an attached data frame, the changes are
not kept during after detaching the data frame

> chi2 <<- chi2 ^ 2
> ls()
[1] "a_b" "cars.df" "cars93" "cityfuel.lm"
[5] "cityfuelt.lm" "citympg.lm" "data" "example.l"
[9] "ind" "last.warning"

Data Frames 17

> chi2
[1] 0.04495900 28.21828025 5.08972343 3.38762027 0.05229717

> get("chi2",2)
[1] 0.04495900 28.21828025 5.08972343 3.38762027 0.05229717

> detach(2)
> test.df$chi2
[1] 0.2120354 5.3120881 2.2560415 1.8405489 0.2286858

So attaching a data frame to alter it isn’t a good of doing it. (You used to
be able to do it, but it now appears to be depreciated.)

Data Frames 18

To alter, or add objects, it is better to mimic the following

> test.df$chi2
[1] 0.2120354 5.3120881 2.2560415 1.8405489 0.2286858
> test.df$chi2 <- test.df$chi2 + 2
> test.df$new <- 1:5
> test.df

norm chi2 let new
1 -0.8376633 2.212035 a 1
2 -1.2233754 7.312088 b 2
3 -2.1004727 4.256042 c 3
4 1.8781837 3.840549 d 4
5 -0.8908000 2.228686 e 5

Data Frames 19

When a data frame is attached, it is still possible to access the original
version as follows

> search()
[1] ".GlobalEnv" "test.df" "package:RWinEdt"
[4] "package:methods" "package:stats" "package:graphics"
[7] "package:grDevices" "package:utils" "package:datasets"
[10] "Autoloads" "package:base"

> summary(test.df)
norm chi2 let

Min. :-2.1005 Min. :2.212 a:1
1st Qu.:-1.2234 1st Qu.:2.229 b:1
Median :-0.8908 Median :3.841 c:1
Mean :-0.6348 Mean :3.970 d:1
3rd Qu.:-0.8377 3rd Qu.:4.256 e:1
Max. : 1.8782 Max. :7.312

Data Frames 20

