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Confidence Intervals for π(X)

Similarly to getting confidence intervals for µ(Y |X) in linear regression it is
also useful to construction confidence intervals of

µ(Y |X) = π(X) =
eXT β

1 + eXT β

One possible approach is to mimic what we did for confidence intervals for
odds.

As mentioned last time,

β̂
approx.∼ N(β, Σ̂)

where Σ̂ is the estimate of the variance based on the inverse of the observed
information matrix.
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Then
η̂(X) = XT β̂

approx.∼ N(XTβ, σ̂2
η) = N(η(X), σ̂2

η)

where
σ̂2

η = XT Σ̂X

So an approximate CI for the log odds, η(X), is given by

XT β̂ ± z∗α/2σ̂η = η̂(X)± z∗α/2σ̂η = (Lx, Ux)

The information for this interval is easily gotten in R with the predict
function.
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> pred.ages1 <- c(15, 25, 35, 45)
> pred.levels1 <- data.frame(age=pred.ages1)
> birthwt.pred1 <- predict(birthwt.glm, pred.levels1,
+ type="link", se.fit=T)
> birthwt.pred1
$fit

1 2 3 4
-0.3827122 -0.8942416 -1.4057711 -1.9173005

$se.fit
1 2 3 4

0.2891894 0.1741429 0.4190995 0.7208235

$residual.scale [1] 1

Once you have the fits and se’s from here, it is easy to get the CI’s.
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> glmlink.ci(birthwt.glm, pred.levels1)
lower upper

15 -0.9495131 0.1840887
25 -1.2355554 -0.5529279
35 -2.2271910 -0.5843511
45 -3.3300885 -0.5045124

Note: glmlink.ci is a function I’ve written for doing confidence intervals
for linear predictor in generalized linear models. For logistic regression, this
corresponds to CIs for log odds.

Effectively it is doing

lower <- pred.obj$fit - qnorm(alpha/2) * pred.obj$se.fit
upper <- pred.obj$fit + qnorm(alpha/2) * pred.obj$se.fit
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The CI’s for η(X) work similarly to the CI’s for µ(Y |X) in linear regression.
They are narrowest for Xs around the mean X and get wider as X moves
away from the mean X.
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To get a confidence interval for the odds at X, ω(X) = eη(X), we just need
to exponentiate the CI for η(X), giving

CI(ω(X)) = (eLx, eUx)

= e
η̂(X)±z∗α/2σ̂η

= ω̂(X)× (e−z∗α/2σ̂η, e
z∗α/2σ̂η)

Similarly we can get a confidence interval for π(X) by

CI(π(X)) =
(

eLx

1 + eLx
,

eUx

1 + eUx

)
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For ages 15, 25, 35, and 45, 95% CIs for the odds and probability of a low
birth weight baby are

# Odds
> exp(glmlink.ci(birthwt.glm, pred.levels1))

lower upper
15 0.38692937 1.2021224
25 0.29067329 0.5752630
35 0.10783091 0.5574675
45 0.03578994 0.6037999

# Probability
> glmpred.ci(birthwt.glm, pred.levels1)

lower upper
15 0.27898275 0.5458926
25 0.22521059 0.3651854
35 0.09733517 0.3579320
45 0.03455328 0.3764808

Note: glmpred.ci is a function I’ve written for doing confidence intervals
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for “response” predictor in generalized linear models. For logistic regression,
this corresponds to CIs for the probabilities.

These are asymmetric intervals as the transformations ex and ex

1+ex are
non-linear. The asymmetry can be seen in the following to plots.
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As ω̂(X) and π̂(X) are MLEs, they have asymptotic normal distributions.
By the delta rule

V̂ar(ω̂(X)) = e2η̂(X)σ̂2
η

= (ω̂(X))2σ̂2
η

V̂ar(π̂(X)) =
(

eη̂(X)

(1 + eη̂(X))2

)2

σ̂2
η

= (π̂(X)(1− π̂(X)))2 σ̂2
η

So an alternative approach to confidence intervals is to use

CIs(ω(X)) = ω̂(X)± z∗α/2SE(ω̂(X))

CIs(π(X)) = π̂(X)± z∗α/2SE(π̂(X))
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This interval for π(X) is also easy to get in R as the predict function can
be made to give π̂(X) and SE(π̂(X)) by

> birthwt.rpred1 <- predict(birthwt.glm, pred.levels1,
+ type="response", se.fit=T)
> birthwt.rpred1
$fit

1 2 3 4
0.4054729 0.2902353 0.1969019 0.1281629

$se.fit
1 2 3 4

0.06971335 0.03587321 0.06627286 0.08054278

$residual.scale [1] 1

The option type determines what predictor is used. type="link" does
things on the “link” (linear predictor - XTβ) scale and type="response"
does things on the response scale, in this case giving probabilities.
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These intervals are generally suboptimal.

The asymptotic normality works better on the “link” (linear predictor) scale.

So the coverage properties of these intervals is not as good as the
transformed based intervals.

One other property of these intervals is that they are symmetric. This can
lead to intervals going outside the interval (0,1). This will tend to when
π̂(X) approaches 0 or 1.

> good.ci <- glmpred.ci(birthwt.glm, pred.levels1)
> bad.ci <- glmpred.ci.bad(birthwt.glm, pred.levels1)
> cbind(good.ci, bad.ci)

lower upper lower upper
15 0.27898275 0.5458926 0.26883726 0.5421086
25 0.22521059 0.3651854 0.21992507 0.3605455
35 0.09733517 0.3579320 0.06700952 0.3267943
45 0.03455328 0.3764808 -0.02969804 0.2860238
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Because of these problems, the first intervals discussed are normally used.

Confidence Intervals for π(X) 13



CI for Odds Ratios

A related problem is constructing confidence intervals for odds ratios of the
form

ω(x1)
ω(x2)

= eβ1(x1−x2)

(assuming only a single predictor variable).

For example, we might want to compare the odds of a low birth weight
birth for 15 and 25 year old women.

Since the odds ratio is just a simple function of the parameters, we can
calculate a CI for the log odds ratio and exponentiate it back up.

Lets look at the CI for log ω(x1)
ω(x2)

= β1(x1 − x2).
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CI(β1(x1 − x2)) = β̂(x1 − x2)± z∗α/2SE(β̂(x1 − x2))

= β̂(x1 − x2)± z∗α/2(x1 − x2)SE(β̂)

= (x1 − x2)β̂ ± z∗α/2SE(β̂)

= (x1 − x2)CI(β1) = (Llo, Ulo)

Exponentiating back gives

CI

(
ω(x1)
ω(x2)

)
= (eLlo, eUlo)

= eCI(β1(x1−x2))

= e(x1−x2)CI(β1)

= (CI(eβ1))(x1−x2)
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So to compare the odds for 15 and 25 year women,

> birthwt.coef <- coef(birthwt.glm)
> birthwt.coef[2]

age
-0.05115294
> birthwt.se <- sqrt(diag(vcov(birthwt.glm)))
> birthwt.se[2]

age
0.03151376
> est <- (15 - 25) * birthwt.coef[2]
> est

age
0.5115294
> se <- abs((15 - 25) * birthwt.se[2])
> se

age
0.3151376
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A 95% confidence interval for the log odds ratio is

CI

(
log

ω(x1)
ω(x2)

)
= −0.5515± 1.96× 0.3151

= −0.5515± 0.6177

= (−0.106, 1.129)

yielding a 95% CI for the odds ratio of

CI

(
ω(x1)
ω(x2)

)
= (e−0.106, e1.129) = (0.899, 3.093)

The estimated odds ratio is

ω̂(15)
ω̂(25)

= eβ̂1(15−25)

= e−0.5115 = 1.668
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> logodds.ci <- c(est - qnorm(0.025, lower.tail=F)*se ,
+ est + qnorm(0.025, lower.tail=F)*se)
> logodds.ci

age age
-0.1061290 1.1291878
> odds.ci <- exp(logodds.ci)
> odds.ci

age age
0.8993086 3.0931433

While the estimated odds ratio is greater than 1, since the CI contains 1,
it is possible that odds are the same for 15 and 25 year old women. This
should happen in this case since the CI for β contains 0 (age may not have
an effect).
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Comparing Models

Now lets consider running the model with all the possible predictor variables
in it

> attach(birthwt)
> race <- factor(race, labels = c("white", "black", "other"))
> ptd <- factor(ptl > 0)
> ftv <- factor(ftv)
> levels(ftv)[-(1:2)] <- "2+"
> bwt <- data.frame(low = factor(low), age, lwt, race,
+ smoke = (smoke > 0), ptd, ht = (ht > 0),
+ ui = (ui > 0), ftv)
> detach("birthwt")
> options(contrasts = c("contr.treatment", "contr.poly"))
> birthwtall.glm <- glm(low ~ ., binomial, bwt)
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> summary(birthwtall.glm)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7038 -0.8068 -0.5008 0.8836 2.2152

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.82302 1.24471 0.661 0.50848
age -0.03723 0.03870 -0.962 0.33602
lwt -0.01565 0.00708 -2.211 0.02705 *
raceblack 1.19241 0.53597 2.225 0.02609 *
raceother 0.74069 0.46174 1.604 0.10869
smokeTRUE 0.75553 0.42502 1.778 0.07546 .
ptdTRUE 1.34376 0.48062 2.796 0.00518 **
htTRUE 1.91317 0.72074 2.654 0.00794 **
uiTRUE 0.68019 0.46434 1.465 0.14296
ftv1 -0.43638 0.47939 -0.910 0.36268
ftv2+ 0.17901 0.45638 0.392 0.69488
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---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 195.48 on 178 degrees of freedom
AIC: 217.48

Number of Fisher Scoring iterations: 4

Suppose we want to examine whether age (β1) or lwt - weight at last
menstrual period (β2) are useful in predicting the probability of low birth
weight babies, i.e.

H0 : β1 = β2 = 0 vs HA : β1 6= 0 or β2 6= 0
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From the Wald tests it appears that lwt might be important. However we
want a single test statistic to examine this hypothesis, similar to the F -test
in linear regression.

The general framework here is similar. We need to consider 2 models

• Full model: the model with all the predictors of interest. Describes HA.

logitπ(X) = β0 + β1x1 + . . . + βpxp

• Reduced model: the model describing H0.

logitπ(X) = β0 + β3x3 + . . . + βpxp

This model must be a special case of the full model, with some parameter
values in the full model being fixed (often by setting them to 0 as above).
Sometimes referred to as a nested model.
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So we want to see if the full model gives a much better fit than the reduced
model. Lets fit the data under both models, giving parameter estimates β̂f

and β̂r for the full and reduced models.

Let
LMAXfull = L(β̂f) and LMAXreduced = L(β̂r)

be the values of the likelihood under both parameter estimates.

Then we can use

LRT = 2 log
LMAXfull

LMAXreduced

= 2 log(LMAXfull)− 2 log(LMAXreduced)

as a test statistic to compare the fits. Then LRT is compared to a χ2
k

distribution where k is the difference in the number of parameters of the
two models (often the number of βs discussed in H0.

This is known as the Likelihood Ratio Test.
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The p-value satisfies
p-value = P [χ2

k ≥ LRT ]

Sometime you will see this written as

LRT = 2(l(β̂f)− l(β̂r))

As mentioned in the book, some software packages will give a value known
as the deviance instead of the value of the likelihood or log likelihood.

deviance = constant− 2 log(LMAX)

where the constant is the same for both models. Then

LRT = deviancereduced − deviancefull

So lets use this test to examine whether age or lwt have an effect here.
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> summary(birthwtall.glm)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 195.48 on 178 degrees of freedom
AIC: 217.48

> birthwt2.glm <- update(birthwtall.glm, . ~ . - age - lwt)
> summary(birthwt2.glm)

Call:
glm(formula = low ~ race + smoke + ptd + ht + ui + ftv,

family = binomial, data = bwt)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6472 -0.7661 -0.5860 1.0250 2.0819
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.0183 0.4551 -4.435 9.23e-06 ***
raceblack 1.0177 0.5096 1.997 0.0458 *
raceother 0.9427 0.4360 2.162 0.0306 *
smokeTRUE 0.8362 0.4046 2.067 0.0387 *
ptdTRUE 1.2983 0.4592 2.827 0.0047 **
htTRUE 1.3702 0.6513 2.104 0.0354 *
uiTRUE 0.8041 0.4562 1.763 0.0780 .
ftv1 -0.4606 0.4678 -0.985 0.3247
ftv2+ -0.0272 0.4338 -0.063 0.9500

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 202.76 on 180 degrees of freedom
AIC: 220.76

So

LRT = 202.76− 195.48 = 7.287

p-value = P [χ2
2 ≥ 7.287] = 0.026
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So it appears that at least one of the two variables is useful in prediction
low birth weight probabilities.

The likelihood ratio test is easily implemented in R using the anova
function. When dealing with with generalized linear models, such as logistic
regression, this function gives an Analysis of Deviance table instead of an
Analysis of Variance table.

> anova(birthwt2.glm, birthwtall.glm, test="Chisq")
Analysis of Deviance Table

Model 1: low ~ race + smoke + ptd + ht + ui + ftv
Model 2: low ~ age + lwt + race + smoke + ptd + ht + ui + ftv
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 180 202.763
2 178 195.476 2 7.287 0.026

The option test takes possible values "Chisq", "F", and "Cp". For most
generalized linear models, "Chisq", as used here, is the correct choice.
Further discussion of this will come later.
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The likelihood ratio test can be used to test for single parameter, such as in

H0 : β2 = 0 vs HA : β2 6= 0

For example, testing whether lwt is interesting, assuming all other variable
will be in the model, can be done by

> birthwt3.glm <- update(birthwtall.glm, . ~ . - lwt)
>
> anova(birthwt3.glm, birthwtall.glm, test="Chisq")
Analysis of Deviance Table

Model 1: low ~ age + race + smoke + ptd + ht + ui + ftv
Model 2: low ~ age + lwt + race + smoke + ptd + ht + ui + ftv
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 179 200.949
2 178 195.476 1 5.474 0.019

So it appears that lwt is important with this test.
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We now have 2 tests for examining hypotheses involving single βs, the Wald
(z) test and the likelihood ratio test. So this is analogous to the t and F
tests in linear regression.

However unlike the linear regression case, these two tests are not the exactly
the same. For example

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.82302 1.24471 0.661 0.50848
age -0.03723 0.03870 -0.962 0.33602
lwt -0.01565 0.00708 -2.211 0.02705 *
raceblack 1.19241 0.53597 2.225 0.02609 *
raceother 0.74069 0.46174 1.604 0.10869
smokeTRUE 0.75553 0.42502 1.778 0.07546 .
ptdTRUE 1.34376 0.48062 2.796 0.00518 **
htTRUE 1.91317 0.72074 2.654 0.00794 **
uiTRUE 0.68019 0.46434 1.465 0.14296
ftv1 -0.43638 0.47939 -0.910 0.36268
ftv2+ 0.17901 0.45638 0.392 0.69488
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the p-values for lwt don’t match up here, though they are similar.

Generally this will be the case. The 2 tests will give similar answers. If there
is a big difference, usually the likelihood ratio will give a better answer, as
the asymptotic approximation to the χ2distribution will be better.

R will give an Analysis of Deviance table for any model, such as
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> birthwt.al.glm <- glm(low ~ age + lwt, family=binomial,
data=bwt)

> anova(birthwt.al.glm, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: low

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 188 234.672
age 1 2.760 187 231.912 0.097
lwt 1 4.789 186 227.123 0.029
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This table examines the set of nested models where variables are added
sequentially. Its an analogue to the sequential sums of squares in linear
regression.

Similarly the order variables get entered matters.

Due to this fact, usually only the last line in the output is useful.
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> birthwt.al.glm <- glm(low ~ lwt + age, family=binomial,
data=bwt)

> anova(birthwt.la.glm, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: low

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 188 234.672
lwt 1 5.981 187 228.691 0.014
age 1 1.567 186 227.123 0.211
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Aside: Likelihood Ratio Test in Linear Regression

The likelihood ratio test is a general procedure so it could be applied to a
normal based regression model.

Remember that the framework for the F -test and the LRT are the same,
i.e. the same pairs of models are being compared, so the two tests are
trying to get at the same thing.

In fact, the F -test is a special case of the LRT. However instead of using
an asymptotic approximation to get p-values, an exact probability result is
used instead.

> bodyfat.full.lm <- lm(Bodyfat ~ Tricep + Thigh, data=bodyfat)
> bodyfat.red.lm <- lm(Bodyfat ~ 1, data=bodyfat)
> bodyfat.full.glm <- glm(Bodyfat ~ Tricep + Thigh, data=bodyfat,
+ family=gaussian)
> bodyfat.red.glm <- glm(Bodyfat ~ 1, data=bodyfat,
+ family=gaussian)
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> anova(bodyfat.red.lm, bodyfat.full.lm, test="F")
Analysis of Variance Table

Model 1: Bodyfat ~ 1
Model 2: Bodyfat ~ Tricep + Thigh
Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 495.39
2 17 109.95 2 385.44 29.797 2.774e-06 ***

> anova(bodyfat.red.glm, bodyfat.full.glm, test="F")
Analysis of Deviance Table

Model 1: Bodyfat ~ 1
Model 2: Bodyfat ~ Tricep + Thigh
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 19 495.39
2 17 109.95 2 385.44 29.797 2.774e-06 ***
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> anova(bodyfat.red.glm, bodyfat.full.glm, test="Chisq")
Analysis of Deviance Table

Model 1: Bodyfat ~ 1
Model 2: Bodyfat ~ Tricep + Thigh
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 19 495.39
2 17 109.95 2 385.44 1.146e-13

The equivalence between the two setting comes from the fact that
Deviance = SSE in normal based models.
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