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Bioassay - Effective/Lethal Doses

Example: Aircraft fasteners

A study was conducted to investigate the effect of pressure loads on the
compressive strength of alloy fasteners used in aircraft construction.
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So far we have looked at questions along the lines of
What is the probability that a fastener will fail for a given load x(?

By logistic regression, the estimate of this is

p—5-3440.0015z

7%(330) — 1 + ¢—5-3440.0015z0

Instead, suppose we are interested in the question

What load will give a probability of failure of 25%7 50%7? g (in
general)?
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If we knew (3, we need to solve

eBotB1z
1 + ebPotBiz

0

or equivalently

logit(mo) = fo + Srx

for x, which yields
logit(ﬂ'o) — ﬁo
51

z(mp) =

Usually we won't know (3, but we can estimate, giving an estimate of x of

A

logit(ﬂ'o) — ﬁo
b1

z(mp) =
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For example

logit(0.25) — (—5.3397)
0.0015484
 log 322 4 5.3397

0.75 = 2738.961
0.0015484 79890

#(0.25) =

So we would expect as 25% failure rate to occur at around 2739 psi.

. logit(0.5) — (—5.3397)

(0.
2(0.5) 0.0015484
0+ 5.3397
_ _ 3448.460
0.0015484

A 50% failure rate is estimate to occur at 3448 psi.
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In the case when we are counting successes, the level where we should get
50% successes is often referred to as the D50 (Effective dose). Similarly,
the £D90 would be the level where we would expect 90% successes.

In the case where are counting failures, particularly deaths, people often
talk about LD (lethal dose) levels, particularly LD50s. This terminology is
particularly common in toxicology.

Given that we can estimate () it would also be nice to get a confidence
interval for it.

One approach would be to calculate the standard error of z(my) and to use
the interval

#(0) £ 27 1, S E (i (mo))

This can be done as the SE can be determined.
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For simplicity, lets just consider the £ D50 from now on as the formulas are
easier to deal with. Let & = —fy/01 be the estimate of the ED50. It can
be shown that

Voo — 2301 + 2214

h

Var(z) ~

where vgp = Var(Bo), Vi1 = Var(ﬁl), and vg; = COV(Bo,Bl).

However this particular interval tends not to work well as the asymptotic
normality often isn't good. Instead another approach is more popular.
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Fieller Intervals

Suppose we are interested in estimating the quantity zg = —fy/51 where

By and (31 are estimated by 3y and 31 and these estimates are assumed to
be normally distributed with means 3y and (3;, variances vy and vq; and
covariance vy (our setup, at least asymptotically).

Now consider the random variable

Y = BO +ZCoBl

Then
Bo

A

Elp] = Bo + 2061 = Bo + —

and
V(ZC()) = Var(w) = Voo + 2:601/01 + ngyll
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Then a confidence set for x( is given by the set of = satisfying

Bo + 3331
V(x)

*

— Zoz/Q

or equivalently

(Bo+ zp1)” < 220,V ()

This involves solving the quadratic equation

(Bf - ZZQ/QVH)SUQ — (2V01ZZ2/2 — 25051)95 + 53 — Vooz;ﬁg =0

For the fastener example, a 95% confidence interval is (3342.314, 3556.656)
(the estimate is 3448.460)
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> fieller(coef (fasten.glm), vcov(fasten.glm))
fasten.load fasten.load
3342.314 3556.656

# this is a function I wrote since writing out the math is ugly

This procedure won't necessarily give an interval. The result could be an
interval, a semi-infinite interval, or the complement of an interval. In fact
it may not give an interval (I think).

For example their won't be a value of x satisfying

(Bo + 1)? < ZZQ/QV(ZU)

A

(2V01222/2 - 23061)2 < 4(3% - ZZQ/QVH)W?) - VOOZZ2/2)

(essentially no interval)
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In addition, if )
ﬁ% — 222/21/11 <0

the values satisfying X A
(Bo + x61)? < 222/2‘/(5’7)

will satisfy (—oo, L) U (U, 00) where L and U are the roots of the quadratic
equation to be solved.

However if (3 is large relative to SE((3), then this procedure should give a
narrow interval for x (7). Intuitively this makes sense, as large changes in
x will lead to large changes in m(x).

In the general case of confidence sets for z (), the procedure gets changed
to finding xs satisfying

BO + 51361 — logit(ﬂ'g)
V()

*

— Zoz/2

Fieller Intervals 11



Comparing Linear and Logistic Regression

So far we've seen two different types of regression, linear regression (General
Linear Model), and Logistic Regression. Lets look at the similarity between

the two settings

Feature Linear Regression Logistic Regression

Random Component Y;| X; ind N(u(X),0?)  YX; e Bin(1,7(X;))
Systematic Component n(X;) = X;0 n(Xi) = XipB
Link (Y1 X5) = n(X;) logit (u(Y:|X:)) = n(X;)

In both settings we have a distributional assumption about the response
variable, a linear predictor involving covariates, and a relationship between

the mean of the distribution and the linear predictor.
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Generalized Linear Model

We can extend this comparison to a more general situation, giving the
Generalize Linear Model. This involves the following 4 pieces.

1. Distribution: What is the distribution of the response variable y. Often
taken to be a member of the exponential family.

2. Linear predictor: n = X3

3. Link function g(-): Relates the linear predictor to the mean of the
outcome variable

gw)=n=XB pu=g'(n) =9 "(XP)

g(x) needs to be a continuous, monotonic function of x.
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In logistic regression we have

logit(u) = log ﬁ =1

So the logit function is the link function in this case.

4. Dispersion parameter ¢»: Some distributions have an additional parameter
dealing with the the spread of the distribution. The form of this usually
depends on the relationship between the mean and the variance. With
some distributions, this is fixed (e.g. Poisson or binomial), while with
others it is an additional parameter to the modeled and estimated (e.g.
normal or gamma).

Generalized Linear Model 14



Exponential Family of Distributions

While the earlier structure can be used in many situations, this structure
works well for a particular class of distributions known as the exponential
family.

The class includes the normal (Gaussian), binomial, Poisson, Gamma,
Hypergeometric, and Inverse Gaussian.

Distributions in this class have a density (or mass) function of the form

f(y; 0, ¢) = exp{(yb — b(0))/a(¢) + c(y, )}

As we will see soon, the parameter 6 (known as the canonical parameter)
relates to the mean (and higher moments) of the distribution, and ¢ relates
to the dispersion (variance) of the distribution.
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For example, the normal distribution belongs to this class as

f(y:6.9) = ﬂ;? exp {—(3/2;2u)2}

= exp{(yp — p*/2) /0% — (y*/0° +log(2m5?))/2}

so that # = ;1 and ¢ = o2 and

a(@) =,  bO)=0%2  cly,d) = (/0% + log(210?)) /2

Distributions in this class have similar forms for their means and variances.
It can be shown that

p(Y)=0'(0)  Var(Y) =0b"(6)a(¢)

The function b(#) is the cumulant function (related to the log of the moment
generating / characteristic function)
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The function b”(0) is known as the variance function. This depends on the
canonical parameter (and thus the mean). This function, considered as a
function of p, will be written V().

This can be proven based on the standard results (under certain regularity

conditions)
Ol
B [%] 0
and ,
0?1 Ol
E[@] +E (%) ] 0

where [(0, ¢;y) = log f(y; 0, @) is the log-likelihood function.

Exponential Family of Distributions 17



The function a(¢) is often of the form

() =2

where ¢, also denoted by ¢ and called the dispersion parameter, is constant

over observations and w is a known prior weight that varies from observation
to observation.

For example, if observations are the average of m iid normal observations
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Normal Poisson Binomial Gamma Inverse Gaussian

Notation N(p, o) P(u) Bin(m,w)/m G(u,v) IG(u, %)
Rangeof y (—o0,00) 0,1,2,... O,%,%,...,l (0, 00) (0, 00)
o) o’ 1 L 1 o
b(6) o ef log(1+¢?)  —log(—8) /=20
0 e? —1 —1
p(6) 0 € 1+¢f 0 —26
O(p) identity log logit reciprocal u_12
V(1) 1 T p(l — p) p? p

The function p(#) is the inverse canonical link.

The function 6(y) is known as the canonical link.
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Link Functions

Changing the link functions allows for different relationships between the
response and predictor variables. The choice of link function g(-) should
be made so that the relationship between the transformed mean and the
predictor variables is linear.

Note transforming the mean via the link function is different from
transforming the data by the same function.

You will end up with different models, except in special situations, usually
involving linear transformations.

For example consider the two models
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1. Transform data: FllogY;|X;] = X5
log Y;| X;, 8 ~ N(X;3,02) or equivalently Y;| X, 8 ~ logN (X3, 0?)
52
EY;| X, 8] = exp (Xzﬂ + 7)
and
Var (Y| Xy, 8) = exp(2(X;8 + 0°))(exp(c”) — 1)
2. Transform mean: log u(Y;|X;) = X0

Y;| X, B ~ N(u;, 0?) where log u; = X;0, pu; = exp(X;3) (normal model
with log link)
EY;| X5, 8] = exp(X;3)
and
Var(Y;| X, 8) = o

The first model has a different mean and the variability depends on X
where as the variability in the second model does not depend on X.
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When choosing a link function, you often need to consider the plausible
values of the mean of the distribution.

For example, with binomial data, the success probability must be in [0,1].
However X 3 can take values on (—o00, c0).

Thus you can get into trouble with binomial data with the model © = X33
(identity link).
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Possible choices include

e Logit link (logistic regression):

g(p) = log

e Probit link (probit regression):

g(p) =® )  (Standard Normal Inverse CDF)

e Complementary Log-Log link

g(p) = log(—log(p))

All of these happen to be quantile functions for different distributions.
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Thus the inverse link functions are CDFs

e Logit link:
1) = ¢’ (Standard Logistic)
=y +e 5
e Probit link:
g ') =2(n  (N(0,1))
e Complementary Log-Log link:
g ') =e*  (Gumbel)

Link Functions

24



Thus in this case any distribution defined on (—o0, 00) could be the basis
for a link function, but these are the popular ones. One other choice that is
used are based on t, distributions as they have some robustness properties.

Note that a link function doesn’t have to have the property of mapping the
range of the mean to (—o0,00). For example, we used it (sort of), in the
soda bottle return example, though in that case it doesn’'t work well. Lets
do it better by fitting a model corresponding to

pw(Yi/m|X;) = Bo + 51X = i

Var(Y,/m|X;) = o401

Trying to get ¢ = 1 is a bit of work, so we aren’'t quite fitting a binomial
model with the identity link.

(This is an example of a quasi-likelihood model.)
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> return.ident.glm <- glm(ret.propl[,1] ~ deposit,
+ family=quasi(link="identity", variance="mu(l-mu)"))
> summary(return.ident.glm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0771708 0.0194416 3.969 0.0165 =*
deposit 0.0275962 0.0009692 28.473 9.05e-06 *xx*x*

Signif. codes: O ’*xx’ 0.001 ’*xx’ 0.01 ’x” 0.05 °.” 0.1 > ’ 1
(Dispersion parameter for quasi family taken to be 0.005050623)

Null deviance: 2.216343 on 5 degrees of freedom
Residual deviance: 0.020666 on 4 degrees of freedom

So the estimated probabilities of return are invalid when the deposit is
outside the interval (2.80, 33.44) which is matches well with the range of
the data.
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In the binomial case, it can be reasonable if the success probabilities lie in
the range (0.2, 0.8) for the levels of the predictor variables of interest.

For the example, the observed proportions range from 0.144 to 0.898, which
goes outside this range.

Similarly, an inverse link function doesn’t have to have to map X back to
the whole range of the mean for a distribution.

For example, the log link will only give positive means (= €"). This can
be an useful model with normal data, even though in general a normal mean
can take any value.

Link Functions 27



Common Link Functions

The following are common link function choices for different distributions
(all available in R).

e Normal (R calls this gaussian)

— Identity: g(u) = p
— Log: g(u) =logu
— Inverse: g(u) :%

e Binomial

— Logit: g(u) = log 15 = logit(x)

— Probit: g(u) = &1 (p)

— Cauchit: g(p) = tan(w(p — 1/2))

— Complementary Log-Log link: g(u) = log(—log(1 — u))
— Log: g(u) = log
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e Poisson

— Log: g(u) = log
— Identity: g(u) = p
— Square root: g(u) = /1t

e Gamma

— Inverse: g(u) :%
— Log: g(u) =logu
— Identity: g(u) = p

e Inv-Normal

— Inverse squared: g(u) =

— Inverse: g(u) :i

— Log: g(u) = log
— Identity: g(u) = p

1

112

Common Link Functions
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The first link function mentioned for each distribution is the canonical link.

This is the link function that sets the transformed mean to the canonical
parameter (i.e. g(u) = 6)

So for the binomial setting

e
logit (1 n 69> —0
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Dispersion Parameter

So far we have only discussed the mean function. However we also need
to consider the variability of the data as well. For any distribution, we can
consider the variance to be a function of the mean (V' (u)) and a dispersion
parameter (¢)

Var(Y) = ¢V (1)

The wvariance functions and dispersion parameters for the common
distributions are

Distribution | N(u,0?) | P(p) | Bin(m,p)/m | Gamma(u,v)

V() 1 f p(l — p) s

2 1 1

Note for the Gamma distribution, the form of these can depend on how the
distribution is parameterized. In this case % is the square of the coefficient
of variation or the usual shape parameter and u is the mean.
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So when building models we need models for dealing with the dispersion in
the data. Exactly how you want to do this will depend on the problem.

For now, for the normal, gamma, and inverse Gaussian we will estimate the
dispersion parameter and for the binomial and Poisson we will treat it as a
fixed, known constant.

Later we will look at binomial and Poisson cases where we will estimate a
dispersion parameter.

(Actually the deposit example | fit earlier was an example of this.)
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