
Model Assessment - Part II

Statistics 149

Spring 2006

Copyright ©2006 by Mark E. Irwin

Goodness of Fit Tests

One thing that would be nice is to get more evidence on whether a model
actually fits the data that just what we can get from the residual analysis.
When the mi aren’t too small, there are a couple of tests that we can do
to examine this.

• Deviance Goodness-of-Fit Test

What we really are interested in examining is the null hypothesis

H0 : logit(πi) = β0 + β1xi1 + . . . + βp−1xi,p−1

In this null hypothesis some of the βs could be 0. We just don’t want
missing terms, such as a missing predictor or an x2

j type term.

One possible alternative to compare this null with is

HA : logit(πi) = αi (i = 1, . . . , n, with n different parameters)

Goodness of Fit Tests 1

This model is sometimes referred to as the saturated model.

As these are nested models, we can do a drop of deviance test to
see whether there is evidence that the hypothesized logistic model is
adequate or not.

Under H0,

log L(β̂) = C +
n∑

i=1

Yi log π̂i + (mi − Yi) log(1− π̂i)

and under HA,

log L(α̂) = C +
n∑

i=1

Yi log p̂i + (mi − Yi) log(1− p̂i)

Goodness of Fit Tests 2

So the drop in deviance test statistic is

X2 = −2(log L(β̂)− log L(α̂))

= −2
n∑

i=1

{(Yi log π̂i + (mi − Yi) log(1− π̂i))

− (Yi log p̂i + (mi − Yi) log(1− p̂i))}

= 2
n∑

i=1

Yi log
p̂i

π̂i
+ (mi − Yi) log

1− p̂i

1− π̂i

= 2
n∑

i=1

Yi log
Yi

miπ̂i
+ (mi − Yi) log

mi − Yi

mi −miπ̂i

This is compared to a χ2
n−p distribution.

Note that this is sometimes referred to as the likelihood ratio goodness-
of-fit test since it is a likelihood ratio test.

Goodness of Fit Tests 3

This statistics has a tie with the deviance residuals as

X2 =
n∑

i=1

Dres2
i

This test is easily conducted in R. The line for Residual Deviance in the
summary(glmobject) gives information for this statistic.

For the example examined today

> summary(fasten.logit.glm)

Null deviance: 112.83207 on 9 degrees of freedom
Residual deviance: 0.37192 on 8 degrees of freedom

> pchisq(deviance(fasten.logit.glm),
df.residual(fasten.logit.glm), lower.tail=F)

[1] 0.999957

Goodness of Fit Tests 4

> summary(deposit.glm)

Null deviance: 1108.171 on 5 degrees of freedom
Residual deviance: 12.181 on 4 degrees of freedom

> pchisq(deviance(deposit.glm), df.residual(deposit.glm),
lower.tail=F)

[1] 0.01605229

> summary(ysim.glm)

Null deviance: 265.391 on 19 degrees of freedom
Residual deviance: 33.822 on 18 degrees of freedom

> pchisq(deviance(ysim.glm), df.residual(ysim.glm),
lower.tail=F)

[1] 0.01324954

Goodness of Fit Tests 5

> summary(ysim2.glm)

Null deviance: 265.391 on 19 degrees of freedom
Residual deviance: 20.766 on 17 degrees of freedom

> pchisq(deviance(ysim2.glm), df.residual(ysim2.glm),
lower.tail=F)

[1] 0.2369435

Note that you can have significant parameters in models that don’t fit.
For example, the quadratic example when only a linear term is fit, showed
significant lack of fit. However the linear term was still significant.

Goodness of Fit Tests 6

> anova(ysim.glm, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: ymat

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 19 265.391
x 1 231.569 18 33.822 2.711e-52

In this case, the linear term described much of the variability in the
counts, but there was still some left to be explained by the quadratic
term.

Goodness of Fit Tests 7

> anova(ysim2.glm, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: ymat

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 19 265.391
x 1 231.569 18 33.822 2.711e-52
I(x^2) 1 13.056 17 20.766 3.023e-04

Note that it is possible to have a model that doesn’t show significant
lack of fit, but can still have new variables added to the model that show
statistical significant.

Goodness of Fit Tests 8

There is another way to think of this test. Consider the 2 ×n table of
observed counts

Y1 Y2 · · · Yn−1 Yn

m1 − Y1 m2 − Y2 · · · mn−1 − Yn−1 mn − Yn

m1 m2 · · · mn−1 mn

and the corresponding table of expected counts, where the expected
counts come from the logistic regression model

m1π̂1 m2π̂2 · · · mn−1π̂n−1 mnπ̂n

m1 −m1π̂1 m2 −m2π̂2 · · · mn−1 −mn−1π̂n−1 mn −mnπ̂n

m1 m2 · · · mn−1 mn

Goodness of Fit Tests 9

So we can consider this Goodness-of-Fit test as comparing the observed
counts with the expected counts with the statistic

X2 =
∑

all cells

2Oi log
Oi

Ei

• Pearson Goodness-of-Fit Test

A common way of examining goodness of fit is with a Pearson Chi-square
test. We can do the same thing here.

Working with the same observed and expected table, Pearson’s Chi-
square test has the form

X2
p =

∑

all cells

(Oi − Ei)2

Ei

This statistic is also compared to a χ2
n−p distribution.

Goodness of Fit Tests 10

As with the Deviance Goodness-of-Fit test, this statistic can be tied
residuals, Pearson residuals in this case as

X2
p =

n∑

i=1

Pres2
i

Usually the test statistics give similar results. For the four examples
considered

Test Fastener Deposit Simulated - Linear Simulated - Quadratic

X2 0.372 12.19 33.82 20.77

X2
p 0.371 12.29 31.18 20.35

Goodness of Fit Tests 11

Note that both of these tests require that the mi to be large.

To exhibit what can happen in this case, lets consider the situation where

Yi
iid∼ Bin(1, π).

In this case π̂ = ȳ giving

X2
p =

∑ (Yi − ȳ)2

ȳ(1− ȳ)
= n

and
X2 = −2n {ȳ log ȳ + (1− ȳ) log(1− ȳ)}

In the first case the distribution is degenerate and in the second it strongly
depends on π̂. For these to be valid goodness of fit tests, we need that
the distribution not to depend on the parameter estimates (at least not
strongly). This will be the case if the mi are big.

Goodness of Fit Tests 12

Deviances for Grouped Binomial Data vs Individual
Bernoulli Trials

As we’ve seen earlier, for fitting purposes it doesn’t matter whether we use
the individual Bernoulli trials or the grouped binomial data. However when
looking at the deviances of the models it does.

What R and many other packages report for the residual deviance for model
is

ResidualDeviance = 2 {log L(SaturatedModel)− log L(Model)}

where the saturated model is

Yi
ind∼ Bin(mi, πi)

(each observation has its own π)

Deviances for Grouped Binomial Data vs Individual Bernoulli Trials 13

In the Bernoulli form of the model, all of the mi = 1, whereas in the
binomial model many (maybe all) of the mi > 1. So the number of
parameters fit in the two cases is different.

For example, lets look at output from the fastener example

> anova(fasten.logit.glm, test="Chisq") # binomial
Analysis of Deviance Table

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 9 112.832
fasten.load 1 112.460 8 0.372 2.833e-26

> anova(fasten.bern.glm, test="Chisq") # Bernoulli
Analysis of Deviance Table

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 689 956.17
load 1 112.46 688 843.71 2.833e-26

Deviances for Grouped Binomial Data vs Individual Bernoulli Trials 14

So while the residual deviances are different for the different approaches,
the differences in deviances for comparing different models is the same. For
example, the tests investigating whether load is important in the fastener
example both have X2 = 112.46 on 1 df.

One additional comment on why not to use the goodness of fit tests
discussed in the Bernoulli sampling case.

In most cases the df ≈ n, so the statistics are acting like the sum of
n Bernoulli terms each based on a sample size of one. The normal
approximation to the Binomial doesn’t work well when m = 1.

Deviances for Grouped Binomial Data vs Individual Bernoulli Trials 15

Checking Goodness of Fit when mi = 1

It would be nice to be able to check goodness of fit of a model in this case.
There are a few approaches to this.

One idea is to fit alternate models which investigate possible deviations
from the model. For example, with the birth weight example, earlier we
looked at the model

logit(πlow) = β0 + β1age

To examine the fit of this model, we could look at

logit(πlow) = β0 + β1age + β2age2

and see if adding the β2age2 term significantly improves the fit.

Checking Goodness of Fit when mi = 1 16

> birthwt.age.glm <- glm(low ~ age, family=binomial, data=bwt)
> birthwt.age2.glm <- glm(low ~ age + I(age^2),

family=binomial, data=bwt)

> anova(birthwt.age.glm, birthwt.age2.glm, test="Chisq")
Analysis of Deviance Table

Model 1: low ~ age
Model 2: low ~ age + I(age^2)
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 187 231.912
2 186 230.464 1 1.448 0.229

In this case adding the square term does make much of a difference.

In addition you could also add new variables in this type of test. For example

Checking Goodness of Fit when mi = 1 17

> anova(birthwt.age.glm, birthwt.hl.glm, test="Chisq")
Analysis of Deviance Table

Model 1: low ~ age
Model 2: low ~ age + ptd + ht + lwt + ui
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 187 231.912
2 183 205.153 4 26.758 2.224e-05

This suggests that we are missing some variables from the model. Note that
this type of situation is considered more as model building than checking
the fit of the model.

Another approach for checking goodness of fit is due to Hosmer and
Lemeshow (1980). There idea is that observations with similar levels of the
predictor variables should have similar associated probabilities π(Xi) and
similar observation patterns.

Checking Goodness of Fit when mi = 1 18

Based on this concept, their idea is the break the observations into g groups
of similar observations and to compare the observed and expected counts
in the g groups.

Group 1 2 · · · g

Successes Y1 Y2 · · · Yg

Failure m1 − Y1 m2 − Y2 · · · mg − Yg

Total m1 m2 · · · mg

and the corresponding table of expected counts, where the expected counts
come from the logistic regression model and π̄i is the average of the fitted
probabilities of the observations in group i.

Group 1 2 · · · g

Successes m1π̄1 m2π̄2 · · · mgπ̄g

Failures m1(1− π̄1) m2(1− π̄2) · · · mg(1− π̄g)

Total m1 m2 · · · mg

Checking Goodness of Fit when mi = 1 19

When choosing the groups, you usually want about ≈ n
g observations per

group. The question is how to get “similar” observations into each group.

Their approach is to base it on the fitted probabilities π̂(Xi). Group 1
has the observations with the n

g smallest π̂(Xi)s, group 2 gets the next n
g

smallest π̂(Xi)s, and so on.

If there is only a single predictor, this is equivalent to grouping by the levels
of X. This idea breaks down if you have multiple predictor variables or
functions of predictor variables (i.e. including X and X2).

Some fiddles need to be done when n isn’t a multiple of g, ties in the
π̂(Xi)s, etc.

While g can be any integer at least 3, the default value in many packages
is 10. Hosmer and Lemeshow recommend that g ≥ 6. The choice may
depend on the number of unique patterns of the Xi (and thus the number
of unique π̂(Xi)) in the data set as well as the number of observations n.

Checking Goodness of Fit when mi = 1 20

To measure the goodness of fit, the Pearson type statistic based on the
earlier observed and expected tables

X2
HL =

∑

all cells

(Oi − Ei)2

Ei

=
g∑

i=1

(Yi −miπ̄i)2

miπ̄i(1− π̄i)

is calculated and compared to a χ2
g−2 distribution.

For the birth weight example with age, ptd, ht, lwtb and ui as predictors,

> birthwt.hl10 <- hosmer.lemeshow(birthwt.hl.glm, nclass=10)
>
> birthwt.hl10$hl
[1] 8.717504
> birthwt.hl10$pvalue
[1] 0.3666846

Checking Goodness of Fit when mi = 1 21

The choice of g can affect the statistic. For example changing g in the birth
weight example can change the p-value. As you expect X2

HL to increase
with g as the df increases with g.

g 6 7 8 9 10 11 12 13 14

X2
HL 5.93 3.00 7.89 5.58 8.72 10.11 7.69 8.05 21.04

p-value 0.20 0.70 0.25 0.59 0.37 0.34 0.66 0.71 0.05

(The values for g = 14 are invalid)

Note that this test is known for having low power, as is common with many
goodness of fit tests. For this reason, this function is not built into R.
The version used above is available in the R code for the lecture (and is
a hack - use at your own risk). Even though this test isn’t powerful, it is
still commonly used and is available in many other packages (SAS, Stata,
Minitab, etc).

Checking Goodness of Fit when mi = 1 22

There are other goodness of fit tests available for logistic regression. One
example is contained in the Design library. The function residuals.lrm
will perform the le Cessie-van Houwelingen test, which is supposed to be
more powerful. lrm is an alternative approach for doing logistic regression
in R.

Checking Goodness of Fit when mi = 1 23

Examining for Influence in Binomial Regression

As with linear regression, it is desirable to examine for influential observations
when assessing a logistic regression model. Fortunately there are analogues
to the measures used for linear regression. In fact we can apply the R
functions influence.measures, hatvalues, etc to glm.objects directly
and treat them the same way as we would the output from a linear regression
model.

For example with the bottle deposit example

5 10 15 20 25 30

0.
0

0.
4

0.
8

Deposit

π̂

5 10 15 20 25 30

−
3

−
2

−
1

0
1

Deposit

D
ev

ia
nc

e
R

es
id

ua
l

Examining for Influence in Binomial Regression 24

> influence.measures(deposit.glm)
Influence measures of

glm(formula = returned ~ deposit, family = binomial()) :

dfb.1_ dfb.dpst dffit cov.r cook.d hat inf
2 0.0813 -0.0662 0.0815 2.750123 0.00441 0.359 *
5 0.1908 -0.1424 0.1944 2.584148 0.02459 0.344 *
10 0.1907 -0.1048 0.2193 2.302322 0.03083 0.286
20 -0.6226 -3.8645 -8.3498 0.000732 0.79583 0.288 *
25 -0.1644 0.4705 0.6482 1.735849 0.22278 0.352
30 -0.2860 0.5529 0.6534 1.833322 0.22925 0.371

So for this example, the observation at 20 appears to be influential (df.beta
for deposit, dffit, cooks.d).

Note that these are only analogues to the linear regression procedures. The
formulas are different.

Examining for Influence in Binomial Regression 25

One reason for the difference is that the observations have difference
variance. Maximum likelihood takes account of this in fitting, implying that
the influence measures must also take account of them.

An important change comes into the leverages. Let W be a diagonal matrix
of weights used in fitting the model. If we are fitting a logistic regression

Wii = miπ̂i(1− π̂i)

If a different link function is used, the weights will be different.

Then the hat matrix satisfies

H = W 1/2X(XTWX)−1XTW 1/2

This property comes from the fact that the MLE for a GLM can be calculated
by Iteratively Reweighted Least Squares.

For the fastener example

Examining for Influence in Binomial Regression 26

2500 3000 3500 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Load (psi)

π̂

2500 3000 3500 4000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3
Load (psi)

D
ev

ia
nc

e
R

es
id

ua
l

Examining for Influence in Binomial Regression 27

> influence.measures(fasten.logit.glm)
Influence measures of

glm(formula = fasten.res ~ fasten.load, family = binomial()) :

dfb.1_ dfb.fst. dffit cov.r cook.d hat inf
1 0.60759 -0.5653 0.6505 1.110 0.197720 0.2133
2 0.20543 -0.1870 0.2311 1.672 0.029852 0.2528
3 0.02352 -0.0206 0.0292 1.831 0.000488 0.2869 *
4 -0.40564 0.3284 -0.6266 0.804 0.163983 0.1322
5 0.04348 -0.0266 0.1162 1.339 0.007530 0.0715
6 -0.00484 -0.0825 -0.5745 0.952 0.148541 0.1488
7 -0.05687 0.0813 0.1749 1.554 0.017162 0.1899
8 0.12678 -0.1545 -0.2302 1.383 0.028911 0.1386
9 -1.06290 1.2213 1.5473 0.530 0.736963 0.2854 *
10 0.21240 -0.2367 -0.2761 1.718 0.042379 0.2806

Actually I’m a bit surprised that anything is flagged as influential here.
From looking at the plot of the data, I didn’t expect to see anything since
the residuals are small.

Examining for Influence in Binomial Regression 28

For the birth weight data, nothing seems to be particularly influential as

> birthwt.hat[birthwt.hat > 3*6/189]
13 51 66 93 102 106

0.1133048 0.1059299 0.1021695 0.1538557 0.1145216 0.1301092
133 139 140 188 189

0.1253009 0.1078438 0.1033781 0.1012186 0.1019583

> birthwt.dffits[birthwt.dffits > 3*sqrt(6/183)]
133

0.5955585

> birthwt.cooksd[birthwt.cooksd > qf(0.5,6,183)]
named numeric(0)

> birthwt.dfbetas[dfbetamax > 1,]
(Intercept) ptd1 age ht1 lwt ui1

Examining for Influence in Binomial Regression 29

> birthwt.dfbetas[dfbetamax == max(dfbetamax),] # obs 13
(Intercept) ptd1 age ht1 lwt ui1
-0.36158144 -0.046211 -0.038660 0.560169 0.342050 -0.026773

For this example, not much is going on in the way of influential points.

Examining for Influence in Binomial Regression 30

Coding Categorical Factors in GLMs

When dealing with categorical predictors in a logistic regression, they need
to be converted to indicator variables, as in linear regression. The approach
that R takes is the same as for linear regression.

As a default, for a k level factor, k − 1 indicators variables are created.
The indicator that gets dropped is the one for the level coded as 1 in the
internal R coding.

If desired, other contrasts can be used (e.g. helmert or
sum) by setting the option, such as the R default of
options(contrasts=c("contr.treatment","contr.poly")).

(Note in S-Plus, the default is
options(contrasts=c("contr.helmert","contr.poly")).

No matter which setting is used, the same model is being fit. However
the interpretation of the parameters changes if you changes the contrast
setting. In addition, changing which indicator variable you drop changes

Coding Categorical Factors in GLMs 31

the parameterization.

For example, consider Sleuth problem 21.15 dataset with the model
favor ~ CONTEXT + MODE + CONTEXT:MODE.

> summary(temp.glm)

Deviance Residuals:
1 2 3 4 5 6 7 8

-1.0351 -0.9533 0.9989 0.9405 1.3235 0.3691 -1.3732 -0.3814

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1103 0.1257 -0.878 0.37995
CONTEXTVietnam -0.7954 0.1851 -4.296 1.74e-05 ***
MODEscattered -0.5095 0.1803 -2.826 0.00472 **
CONTEXTVietnam:MODEscattered 0.2758 0.2676 1.031 0.30273

Null deviance: 41.9151 on 7 degrees of freedom
Residual deviance: 7.7815 on 4 degrees of freedom

Coding Categorical Factors in GLMs 32

If we switch the indictors we get

> summary(temp3.glm) # note that this is fudged output

Deviance Residuals:
1 2 3 4 5 6 7 8

-1.0351 -0.9533 0.9989 0.9405 1.3235 0.3691 -1.3732 -0.3814

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.1394 0.1436 -7.934 2.12e-15 ***
CONTEXTCuba 0.5196 0.1932 2.689 0.00717 **
MODEnot 0.2337 0.1977 1.182 0.23722
CONTEXTCuba:MODEnot 0.2758 0.2676 1.031 0.30273

Null deviance: 41.9151 on 7 degrees of freedom
Residual deviance: 7.7815 on 4 degrees of freedom

While the fit statistics are the same, the only parameter estimate that is
the same is the interaction.

The reason for this the parameterization has changed.

Coding Categorical Factors in GLMs 33

In the first case

β0 = logit(πCn)

β1 = logit(πV n)− logit(πCn)

β2 = logit(πCs)− logit(πCn)

β3 = logit(πV s)− logit(πV n)− logit(πCs) + logit(πCn)

whereas in the second case

β0 = logit(πV s)

β1 = logit(πCs)− logit(πV s)

β2 = logit(πV n)− logit(πV s)

β3 = logit(πV s)− logit(πV n)− logit(πCs) + logit(πCn)

Similar effects occur with the model favor ~ CONTEXT + MODE.

Coding Categorical Factors in GLMs 34

The implication of this is that you need to be careful in interpreting the
parameters models like this. In addition, when you are dealing categorical
predictors, you should be using drop in deviance tests, not Wald z-tests, as
they are independent of the parameterization.

> anova(temp2.glm, test="Chisq")

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 41.915
CONTEXT 1 24.681 6 17.234 6.766e-07
MODE 1 8.391 5 8.843 0.004
CONTEXT:MODE 1 1.062 4 7.781 0.303

> anova(temp3.glm, test="Chisq")

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 41.915
context 1 24.681 6 17.234 6.766e-07
mode 1 8.391 5 8.843 0.004
context:mode 1 1.062 4 7.781 0.303

Coding Categorical Factors in GLMs 35

Note that this problem isn’t specific to logistic regression. The same thing
happens with linear regression models (ANOVA) as well.

Coding Categorical Factors in GLMs 36

