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Variance Assumptions

Wave Damage to Cargo Ships: As discussed last class, there was some
evidence for lack of fit in this example.

> summary(wave.glm)

Null deviance: 146.328 on 33 degrees of freedom
Residual deviance: 38.695 on 25 degrees of freedom
AIC: 154.56

> pchisq(deviance(wave.glm), df.residual(wave.glm), lower.tail=F)
[1] 0.03951433

The deviance GOF test is marginally significant.

As suggested last time the variance assumption

Var(Yi|Xi) = µi
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may not be reasonable.
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Maybe we want to do some thing else to model the variance.
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Germination of Orobanche: Orobanche,
commonly known as broomrape, is
a genus of parasitic plants without
chlorophyll that grow on the roots
of flowering plants. In the course
of research into factors affecting the
germination of the seed of the species
of the species Orobanche aegyptiaca,
a batch of seeds was brushed onto a
plate containing a 1/125 dilution of
an extract prepared from the roots of
either a bean or cucumber plant. The
number of seeds which germinated
was recorded. Two different varieties, O. aegyptiaca 75 and O. aegyptiaca
73, were studied.
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> summary(orobanche.glm)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.01617 -1.24398 0.05995 0.84695 2.12123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4122 0.1842 -2.238 0.0252 *
SpeciesO75 -0.1459 0.2232 -0.654 0.5132
ExtractCucumber 0.5401 0.2498 2.162 0.0306 *
SpeciesO75:ExtractCucumber 0.7781 0.3064 2.539 0.0111 *
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 98.719 on 20 degrees of freedom
Residual deviance: 33.278 on 17 degrees of freedom
AIC: 117.87

> pchisq(deviance(orobanche.glm), df.residual(orobanche.glm), lower.tail=F)
[1] 0.01039184
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> sum(resid(orobanche.glm,type="pearson")^2) # Pearson GOF
[1] 31.65114
> pchisq(sum(resid(orobanche.glm,type="pearson")^2),

df.residual(orobanche.glm), lower.tail=F)
[1] 0.01662130
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Both the Pearson and deviance Goodness of Fit tests suggests that there is
a problem.

It is not clear how the systematic part of the model could be changed. We
have all known factors, including all interactions, in the model, there don’t
appear to be any outliers.

If the problem isn’t with the mean structure, maybe its with the variance.
In the analysis, we are assuming that

Var(Yi|Xi) = miπi(1− πi)

Instead, lets assume that

Var(Yi|Xi) = ψmiπi(1− πi)

Variance Assumptions 6



What happens to the Pearson GOF statistic under this assumption

X2
p =

n∑

i=1

(Yi −miπ̂i)2

miπ̂i(1− π̂i)

≈ ψ

n∑

i=1

(Yi −miπ̂i)2

Var(Yi)

≈ ψχ2
n−p

So the expected value of the Pearson GOF test is scaled by a factor of ψ.
The deviance GOF statistic gets scaled in a similar fashion.

For Poisson count data, if we make the assumption

Var(Yi|Xi) = ψµi

we get the same scaling of the GOF statistics.
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Where could the overdispersion come from

• Differences in the experimental conditions.

In the Orobanche example, there were 5 or 6 trials under each of the 4
experimental treatments. It may be that there are difference between the
different trials under the same treatment (temperature, humidity, etc),
leading to different success probabilities.

One way of thinking about this is the following two-stage model.

Yi|pi
ind∼ Bin(mi, pi)

pi
iid∼ Beta(α, β)

E[pi] =
α

α + β
= π

Var(pi) =
α

α + β

β

α + β

1
α + β + 1

= π(1− π)γ
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Then the marginal moments of Yi are

E[Yi] = E[E[Yi|pi]] = E[mpi] = mπi

Var(Yi) = E[Var(Yi|pi)] + Var(E[Yi|pi])

= E[mipi(1− pi)] + Var(mipi)

= mi(π −Var(pi)− π2) + m2
iπ(1− π)γ

= mi(π(1− π))(1− γ) + m2
iπ(1− π)γ

= miπ(1− π)(1 + (mi − 1)γ)

= ψmiπ(1− π)

where τ > 0 is a function of α and β which implies ψ > 1. Yi is said to
have a Beta-Binomial distribution.
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In the wave damage example, one of the observation times was extremely
long. As conditions could change over time, this would introduce more
variability if there where a shift in the type of ship used. In addition it is
possible that there may be more variability among the ships for certain
ship types (i.e. Type E vs Type A)

• Correlation between responses

In binomial data, an important underlying assumption is that each of the
individual Bernoulli trials is independent of the rest. If not, the variance
will not be mπ(1− π).

Suppose that for m Bernoulli trials, each with the same success probability
π, the correlation between any pair of trials is ρ. Then the variance
satisfies
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Var(Y ) = Var
(∑

Zi

)

=
m∑

i=1

Var(Zi) + 2
∑

i<j

ρ
√

Var(Zi)Var(Zj)

= mπ(1− π) + m(m− 1)ρπ(1− π)

= mπ(1− π)(1 + (m− 1)ρ)

= ψmπ(1− π)

In the Orobanche example, this might happen if a germinating seed
produces a chemical that produces that promotes germination in other
seeds.

In the wave damage example, suppose multiple ships where in the same
area at a time of a storm. The if one ship gets wave damage, I would
expect the others to have an increased chance of damage.
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Consequences of Overdispersion

In the earlier analyzes, the inferences performed are based on the assumption
that ψ = 1. If in fact ψ > 1, the standard errors used are too small.

Consider the situation where we consider Y1, Y2, . . . , Yn as iid draws from
P (µ), but in reality Var(Yi) = ψµ. Then

Var(Ȳ ) =
ψµ

n

but the analysis would use

Var(Ȳ ) =
µ

n

So for example, the calculated confidence interval for µ would be

Ȳ ± z∗α/2

√
Ȳ
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when instead it really should be

Ȳ ± z∗α/2

√
ψȲ

The interval would be centered at the right place, but would be too narrow
by a factor of

√
ψ.

This situation follows through in the GLM regression analyzes. The reported
standard errors and z-tests are off by a factor of

√
ψ, which implies that it

is too easy to declare something significant if ψ > 1.

Similarly, the deviance based tests are also invalid as the statistics don’t
have the nominal χ2 distributions, but scaled χ2 distributions.

We need to account for overdispersion, if it exists, to have valid analyzes.
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Quasi-Likelihood Analysis

One approach to dealing with overdispersion would be directly model the
overdispersion with a likelihood based models. For example, use a beta-
binomial model in the binomial case.

Another approach, which is easier to implement in the regression setting, is
a quasi-likelihood approach. Instead of giving a full probability model, only
moment assumptions will be made. A common approach is

• Systematic component (E[Yi|Xi] = µi):

g(µi) = β0 + β1xi1 + . . . + βpxip

where g(·) is a link function.

• Dispersion component (Var(Yi|Xi)):

Var(Yi|Xi) = ψV (µi)
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where V (·) is the variance function.

In general, the variance function can be quite general, when trying to deal
with overdispersion, usually you keep the form matching the distribution
you would like to use for modeling i.e.

• Binomial: V (π) = π(1− π)

• Poisson: V (µ) = µ

R has families available in glm to handle these situation, quasibinomial(),
quasipoisson(), and quasi() (general situation).

The quasibinomial() and quasipoisson() take the same link functions
as binomial(), poisson() so any analysis discusses so far can be done
with overdispersion accounted for. The family quasi() takes a range of
link and variance functions (see help(family) to see all that are possible).

In one sense, the extra families quasibinomial() and quasipoisson()
aren’t needed, as the adjustment to the analyzes are simple.
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First, the estimates of the βs don’t change. To prove this would get into
the details of the fitting algorithm. But the underlying idea uses the fact the
fitting algorithm uses iteratively reweighted least squares. The algorithm
doesn’t calculations of the form

β̂work = (XTWX)−1XTWY

where the weight matrix W depends on the current guess for β.

If the overdispersion is accounted for, the form of weight matrix should be
1
ψW. This gives

β̂∗work = (XT 1
ψWX)−1XT 1

ψWY

= ψ(XTWX)−1XT 1
ψWY

= β̂work

Its similar to the case that you don’t need to know σ2 in least squares to
estimate β.
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While it is not needed for estimation, it is needed for inference. As in the
least squares situation, we can estimate. There are two possible estimates

• Deviance estimate:

ψ̂D =
Residual Deviance

Degrees of freedom
=

X2

df

This is the estimate suggested by Ramsey and Schafer.

• Pearson estimate:

ψ̂P =
X2

p

df

This is the estimate implemented in R and recommended by McCullagh
and Nelder.

Both these estimates based on the fact that under the correct model, both
GOF statistics have approximate ψχ2

df distributions, which has expected
value ψ × df .
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Inference in this case needs to make adjustments for the estimated ψ̂. The

first adjustment is that the standard errors must be multiplied by

√
ψ̂, i.e.

if SEl(β̂j) is the standard error in the likelihood analysis,

SE(β̂j) = SEl(β̂j)
√

ψ̂

Another adjustment that is made on interference on single parameters is to
use a reference tdf distribution instead of the N(0, 1) distribution. There is
little theory to justify using the tdf instead of the N(0, 1). The motivation
is more to mimic the methods of least squares. However it does have the
advantage of being conservative, particularly in the small sample case.

For the Orobanche example
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• ψ = 1:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.4122 0.1842 -2.238 0.0252 *
SpeciesO75 -0.1459 0.2232 -0.654 0.5132
ExtractCucumber 0.5401 0.2498 2.162 0.0306 *
SpeciesO75:ExtractCucumber 0.7781 0.3064 2.539 0.0111 *
---
(Dispersion parameter for binomial family taken to be 1)
Residual deviance: 33.278 on 17 degrees of freedom

• Overdispersion:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4122 0.2513 -1.640 0.1193
SpeciesO75 -0.1459 0.3045 -0.479 0.6379
ExtractCucumber 0.5401 0.3409 1.584 0.1315
SpeciesO75:ExtractCucumber 0.7781 0.4181 1.861 0.0801 .
---
(Dispersion parameter for quasibinomial family taken to be 1.862)
Residual deviance: 33.278 on 17 degrees of freedom
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Including overdispersion in the model makes difference in the conclusion
here. In the original analysis, the interaction looks to have fairly strong
statistical significance. In the new model, the significance is now marginal.

For the main effects model, the conclusions don’t change as much

• ψ = 1:

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3919 -0.9948 -0.3744 0.9831 2.4766

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7005 0.1507 -4.648 3.36e-06 ***
SpeciesO75 0.2705 0.1547 1.748 0.0804 .
ExtractCucumber 1.0647 0.1442 7.383 1.55e-13 ***
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 98.719 on 20 degrees of freedom
Residual deviance: 39.686 on 18 degrees of freedom
AIC: 122.28
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• Overdispersion:

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3919 -0.9948 -0.3744 0.9831 2.4766

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.7005 0.2199 -3.186 0.00512 **
SpeciesO75 0.2705 0.2257 1.198 0.24635
ExtractCucumber 1.0647 0.2104 5.061 8.14e-05 ***
(Dispersion parameter for quasibinomial family taken to be 2.128368)

Null deviance: 98.719 on 20 degrees of freedom
Residual deviance: 39.686 on 18 degrees of freedom
AIC: NA

So extract appears to still be highly significant, which was evident in
the original scatterplot. Species went marginally insignificant to quite
insignificant in the overdispersion analysis. Again agreeing with the
scatterplot, which suggested a small species effect if one existed.
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A couple of other things to note. First note that there is no AIC given
for the quasi-likelihood analysis. This makes sense as there is no likelihood
function here.

Next, notice that residual summary is the same in both analyzes. In fact, the
deviance and Pearson residuals in the quasi-likelihood analysis are defined
the same way as before. Thus the can be examined for patterns and
peculiarities, but can no longer be compared to a reference distribution to
detect outliers.

Similarly, the influence measures discussed earlier don’t change when
overdispersion is accounted for. This seems reasonable since the regression
parameter estimates and thus the fitted values don’t change. Also the effect

of including

√
ψ̂ in the calculation of the measures ends up getting canceled

out.

A small section of the
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• ψ = 1:

dfb.1_ dfb.SO75 dfb.ExtC dffit cov.r cook.d hat inf
1 -0.16802 -0.1977 0.31598 -0.49154 1.004 7.73e-02 0.1205
2 -0.04544 -0.0535 0.08546 -0.13293 1.449 6.21e-03 0.1915
3 -0.33454 -0.3936 0.62916 -0.97871 0.991 2.89e-01 0.2502
4 0.18388 0.2163 -0.34582 0.53795 1.085 9.36e-02 0.1575

• Overdispersion:

dfb.1_ dfb.SO75 dfb.ExtC dffit cov.r cook.d hat inf
1 -0.16802 -0.1977 0.31598 -0.49154 1.004 7.73e-02 0.1205
2 -0.04544 -0.0535 0.08546 -0.13293 1.449 6.21e-03 0.1915
3 -0.33454 -0.3936 0.62916 -0.97871 0.991 2.89e-01 0.2502
4 0.18388 0.2163 -0.34582 0.53795 1.085 9.36e-02 0.1575
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When testing multiple regression parameters, the drop in deviance tests must
also be modified. The approach is to mimic F -tests in linear regression.
The drop in deviance F -test has the form

F =
Drop in deviance/d

ψ̂

when d is the difference in the number of parameters in the two models
begin compared. This F statistic should be compared to a Fd,df where df
is the residual degrees of freedom from the full model.

As with the t procedures discussed earlier, there is little solid theory to
justify this test.

To use this test in R, the anova function can be used, but the option,
test="F", must be used instead. For example,
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> anova(wave.c.qglm, wave.qglm, test="F")
Analysis of Deviance Table

Model 1: Damage ~ Type + Operation
Model 2: Damage ~ Type + Construct + Operation
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 28 70.103
2 25 38.695 3 31.408 6.1912 0.002708 **

In R’s implementation of the test, ψ̂ is the Pearson estimate.

One additional comment on this example. Another mechanism that can lead
to the appearance of overdispersion is missing predictors. If you can find
components to add to the systematic component, it is usually preferable to
a more complicated variance model.

In the wave example, adding the Type:Construct interaction seems to
explain alot.
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> summary(wave.qglm)

Call:
glm(formula = Damage ~ Type + Construct + Operation,

family = quasipoisson(), data = wave2, offset = log(Service))

(Dispersion parameter for quasipoisson family taken to be 1.691)

Null deviance: 146.328 on 33 degrees of freedom
Residual deviance: 38.695 on 25 degrees of freedom

> summary(wave2.qglm)

Call:
glm(formula = Damage ~ Type + Construct + Operation + Type:Construct,

family = quasipoisson(), data = wave2, offset = log(Service))

(Dispersion parameter for quasipoisson family taken to be 1.336)

Null deviance: 146.328 on 33 degrees of freedom
Residual deviance: 14.587 on 13 degrees of freedom
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> anova(wave2.glm,test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log

Response: Damage

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 33 146.328
Type 4 55.439 29 90.889 2.629e-11
Construct 3 41.534 26 49.355 5.038e-09
Operation 1 10.660 25 38.695 0.001
Type:Construct 12 24.108 13 14.587 0.020

So considering this an example of overdispersion probably isn’t valid.
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