Negative Binomial Model for Count Data
Log-linear Models for Contingency Tables -
Introduction

Statistics 149

Spring 2006
Negative Binomial Family

Example: Absenteeism from School in Rural New South Wales

The ’quine’ data frame in the MASS package has 146 observations on 5 variables. Children from Walgett, New South Wales, Australia, were classified by

- Culture: aboriginal vs non-aboriginal
- Age: primary, first, second, or third form (like grade)
- Sex
- Learner status: average vs slow learner

For each child the number of days absent from school in a particular school year was recorded.
Days
Primary
First form
Second form
Third form
0 20 40 60 80
Female
Average learner
Aboriginal
Male
Average learner
Aboriginal
Female
Slow learner
Non-Aboriginal
Male
Slow learner
Non-Aboriginal

Negative Binomial Family 2
> summary(quine.qglm)

Call:
glm(formula = Days ~ .^4, family = quasipoisson(), data = quine)

Deviance Residuals:

 Min 1Q Median 3Q Max
-7.3872 -2.5129 -0.4205 1.7424 6.6783

Coefficients: (4 not defined because of singularities)

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0564 0.3346 9.135 2.22e-15 ***
EthN -0.1386 0.4904 -0.283 0.7780
SexM -0.4914 0.5082 -0.967 0.3356
AgeF1 -0.6227 0.5281 -1.179 0.2406
AgeF2 -2.3632 2.2066 -1.071 0.2864
AgeF3 -0.3784 0.4296 -0.881 0.3802
LrnSL -1.9577 1.8120 -1.080 0.2822

Negative Binomial Family
EthN:SexM:AgeF1:LrnSL	2.1711	2.7527	0.789	0.4319
EthN:SexM:AgeF2:LrnSL	2.1029	4.4203	0.476	0.6351
EthN:SexM:AgeF3:LrnSL	NA	NA	NA	NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 9.51)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1173.9 on 118 degrees of freedom

So there is some suggestion of overdispersion, which is supported by the following residual plots.

Note that this is the largest model that can be fit with these 4 categorical predictors, not necessarily the best model.
Negative Binomial Family
An alternative approach to the quasi-likelihood model is to build a hierarchical model for count data along the lines of the Beta-Binomial distribution for binary data.

\[Y_i | E_i \overset{ind}{\sim} Poisson(\mu_i E_i) \]
\[g(\mu_i) = X_i \beta \]
\[E_i \overset{iid}{\sim} Gamma(\theta, \theta) \]
\[E[E_i] = 1 \]
\[\text{Var}(E_i) = \frac{1}{\theta} \]

Then the marginal distribution of \(Y_i \) is negative binomial with density

\[f(y; \theta, \mu_i) = \frac{\Gamma(\theta + y)}{\Gamma(\theta)y!} \frac{\mu_i^y \theta^\theta}{(\mu_i + \theta)^{y+\theta}}; \quad y = 0, 1, 2, \ldots \]
and moments

\[E[Y_i] = E[E[Y_i|E_i]] = E[\mu_i E_i] = \mu_i \]

\[\text{Var}(Y_i) = E[\text{Var}(Y_i|E_i)] + \text{Var}(E[Y_i|E_i]) \]
\[= E[\mu_i E_i] + \text{Var}(\mu_i E_i) \]
\[= \mu_i + \mu_i^2 \text{Var}(E_i) \]
\[= \mu_i + \frac{\mu_i^2}{\theta} \]

In this case, the bigger \(\theta \) is, the less overdispersion. Note that this model doesn’t fit into the \(\text{Var}(Y) = \psi V(\mu) \) framework, exhibiting that other possibilities exist.
Note that this is not the parametrization often seen for the negative binomial model, which has density

\[f(y; p, \theta) = \frac{\Gamma(\theta + y)}{\Gamma(\theta)y!} p^\theta (1 - p)^y; \quad y = 0, 1, 2, \ldots \]

This can be made to match by setting

\[p = \frac{\theta}{\mu + \theta} \]

If \(\theta \) is known, \(y \) is a member of the exponential family, and thus can be fit by the methods already discussed. In the MASS package, the additional code needed to fit these models is done with the `negative.binomial` family function. The first argument of the function is the value of `theta` and second value is the link, which takes values `log` (default), `identity`, and `sqrt`, the same link functions as for the Poisson.
An earlier analysis suggested that for the Quine example, $\theta \approx 2$. Let's fit the full interaction model in this case.

```r
> summary(quine.glm)
```

Call:
```
glm(formula = Days ~ .^4, family = negative.binomial(2),
    data = quine)
```

Deviance Residuals:
```
       Min          1Q       Median          3Q          Max
-3.2766       -0.9214       -0.2050       0.5263       1.7314
```

Coefficients: (4 not defined because of singularities)
```
                      Estimate  Std. Error t value Pr(>|t|)
(Intercept)           3.0564     0.3807  8.027 8.32e-13 ***
EthN                  -0.1386     0.5402 -0.257 0.79797
SexM                  -0.4914     0.5170 -0.951 0.34380
AgeF1                 -0.6227     0.5192 -1.199 0.23277
```

Negative Binomial Family
AgeF2 -2.3632 1.0977 -2.153 0.03337 *
AgeF3 -0.3784 0.4604 -0.822 0.41280
LrnSL -1.9577 1.0141 -1.931 0.05593 .

SexM:AgeF3:LrnSL NA NA NA NA NA
EthN:SexM:AgeF1:LrnSL 2.1711 1.9480 1.114 0.26734
EthN:SexM:AgeF2:LrnSL 2.1029 2.3865 0.881 0.38001
EthN:SexM:AgeF3:LrnSL NA NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Negative Binomial(2) family
taken to be 1.060021)

Null deviance: 280.18 on 145 degrees of freedom
Residual deviance: 171.98 on 118 degrees of freedom
AIC: 1095.4
Things look better here. The increasing variance has disappeared as can be seen in the following plots. Also based on the Pearson based measure of overdispersion, the negative binomial model seems to have accounted for much of the overdispersion.
One slight problem with this approach is that θ needs to be specified. This isn’t required as we can estimate it along with β.

MASS has a function \texttt{glm.nb} for getting the maximum likelihood estimate of β and θ jointly. It works similarly to the \texttt{glm} function, but only works the negative binomial model. Thus it doesn’t take a family option. Instead it takes a link options, with possibilities \texttt{log} (default), \texttt{identity}, and \texttt{sqrt}. There are summary and anova methods available for this function.

For the full interaction model

\begin{verbatim}
> quine.nb <- glm.nb(Days ~ .^4, data = quine)

> c(theta = quine.nb$theta, SE = quine.nb$SE)
 theta SE
1.9283601 0.2688968

> summary(quine.nb)

Call:

Negative Binomial Family

(Intercept) Days age
 0.9341 0.1533 0.0261

(Dispersion parameter for Negative Binomial family taken to be 1.9703)

 1 2 3 4
(Dispersion parameter for Negative Binomial family taken to be 1.9703)

 0.0052 0.0052 0.0052 0.0052 0.0052

Null deviance: 91.792 on 68 degrees of freedom
Residual deviance: 9.188 on 63 degrees of freedom
AIC: 181.9

Number of Fisher Scoring Iterations: 4
\end{verbatim}
glm.nb(formula = Days ~ .^4, data = quine, init.theta = 1.92836014510701, link = log)

Deviance Residuals:

 Min 1Q Median 3Q Max
-3.2377 -0.9079 -0.2019 0.5173 1.7043

Coefficients: (4 not defined because of singularities)

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.0564 0.3760 8.128 4.38e-16 ***
EthN -0.1386 0.5334 -0.260 0.795023
SexM -0.4914 0.5104 -0.963 0.335653
AgeF1 -0.6227 0.5125 -1.215 0.224334
AgeF2 -2.3632 1.0770 -2.194 0.028221 *
AgeF3 -0.3784 0.4546 -0.832 0.405215
LrnSL -1.9577 0.9967 -1.964 0.049493 *

...
EthN:SexM:AgeF2:LrnSL 2.1029 2.3444 0.897 0.369718
EthN:SexM:AgeF3:LrnSL NA NA NA NA

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Negative Binomial(1.9284) family taken to be 1)

Null deviance: 272.29 on 145 degrees of freedom
Residual deviance: 167.45 on 118 degrees of freedom
AIC: 1097.3

Number of Fisher Scoring iterations: 1

Correlation of Coefficients:

(Intercept) EthN SexM AgeF1 AgeF2 AgeF3
EthN -0.70
SexM -0.74 0.52
AgeF1 -0.73 0.52 0.54

Negative Binomial Family
AgeF2 -0.35 0.25 0.26 0.26

...

EthN:SexM:AgeF1:LrnSL -0.43
EthN:SexM:AgeF2:LrnSL -0.69 0.52

Theta: 1.928
Std. Err.: 0.269

2 x log-likelihood: -1039.324

A more reasonable model in this situation, is to eliminate the Eth:Sex:Age:Lrn and Eth:Sex:Lrn interactions. This can be seen with
> quine2.nb <- glm.nb(Days ~ Lrn/(Age + Eth + Sex)^2, data=quine)

> anova(quine2.nb, quine.nb)
Likelihood ratio tests of Negative Binomial Models

Response: Days

<table>
<thead>
<tr>
<th>Model</th>
<th>theta</th>
<th>Resid. df</th>
<th>2 x log-lik.</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lrn/(Age + Eth + Sex)^2</td>
<td>1.865343</td>
<td>123</td>
<td>-1043.409</td>
<td></td>
</tr>
<tr>
<td>(Eth + Sex + Age + Lrn)^4</td>
<td>1.928360</td>
<td>118</td>
<td>-1039.324</td>
<td>1 vs 2</td>
</tr>
</tbody>
</table>

df LR stat. Pr(Chi)

1
2 5 4.084768 0.5372772

The test performed here is a likelihood ratio test, assuming the estimated θ from the full model. The log-likelihood is calculated for the reduced model, under the θ calculated for the full model.

It ends up for the deviance tests to be applicable, the θ parameter needs to be held constant for all fitted models.

The residual plots do not suggest any serious problems with the smaller
model, as seen in the following plot
Consider the case where two categorical variables are of interest, X with r possible levels and Y with c possible levels.

For now, consider both as response variables (we’ll consider other sampling schemes later)

Let’s form the $r \times c$ table, with the (i, j)th entry equal to the number of observations with $X = x_i$ and $Y = y_j$, denoted by n_{ij}

Example: Business Administration Majors and Gender

A study of the career plans of young men and women sent questionnaires to all 722 members of the senior class in the College of Business Administration at the University of Illinois. One question asked which major within the business program the student had chosen.
<table>
<thead>
<tr>
<th>Major</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>68</td>
<td>56</td>
</tr>
<tr>
<td>Administration</td>
<td>91</td>
<td>40</td>
</tr>
<tr>
<td>Economics</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Finance</td>
<td>61</td>
<td>59</td>
</tr>
</tbody>
</table>

Let's assume that this data was generated under Poisson sampling. We want to come up with a model on how the cell counts depend on the levels of X and Y.

The nature of dependence relates to the association and the interaction structure among the variables.
Model for the data

- The joint PDF of \((X, Y)\): \(P[X = x_i, Y = y_i] = \pi_{ij}\)

- Marginal PDF of \(X\): \(P[X = x_i] = \pi_{i+}\)

- Marginal PDF of \(Y\): \(P[Y = y_j] = \pi_{+j}\)

- Expected cell counts: \(\mu_{ij} = n\pi_{ij}\)
 where \(n = n_{++}\) is the total count.

- \(N = rc\) is the effective sample size (number of observations).

- Poisson rate: \(\pi_{ij}\)

- Log-linear model on \(\log \mu_{ij}\)
Independence Model for Two-way Table

If X and Y are independent, then

$$P[X = x_i, Y = y_i] = P[X = x_i] \times P[Y = y_i] = \pi_i \pi_j$$

and the expected count is

$$\mu_{ij} = n \pi_{ij} = N \pi_i \pi_j$$

This implies that the log-linear model satisfies

$$\log \mu_{ij} = \log N + \log \pi_i + \log \pi_j$$

$$= \lambda + \lambda_i^X + \lambda_j^Y$$
The estimates for the marginal probabilities are

\[
\hat{\pi}_{i+} = \frac{n_{i+}}{n} \quad \hat{\pi}_{+j} = \frac{n_{+j}}{n}
\]

The fitted values for this model are

\[
\mu_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j} = \frac{n_{i+}n_{+j}}{n}
\]

In \textit{R}, the model can be fit by

\[
> \text{business.ind} <- \text{glm}(n \sim \text{major} + \text{gender}, \text{family=poisson()}, \\
> \quad \text{data=business})
\]
> summary(business.ind)

Call:
glm(formula = n ~ major + gender, family = poisson(),
 data = business)

Deviance Residuals:

 1 2 3 4 5 6 7
-0.5085 0.5872 1.6257 -2.0806 -0.5802 0.6291 -1.0940 1.2297

Coefficients:

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.28054 0.09959 42.9810 < 2e-16 ***
majorAdministration 0.05492 0.12529 0.4380 0.66117
majorEconomics -2.42239 0.31460 -7.7000 1.36e-14 ***
majorFinance -0.03279 0.12805 -0.2560 0.79790
genderMale -0.33470 0.10323 -3.2420 0.00119 **

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 168.473 on 7 degrees of freedom
Residual deviance: 11.017 on 3 degrees of freedom
AIC: 63.832

Number of Fisher Scoring iterations: 4

> anova(business.ind, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log
Response: n

Terms added sequentially (first to last)

| | Df | Deviance | Resid. Df | Resid. Dev | P(>|Chi|) |
|---|----|----------|-----------|------------|----------|
| NULL | 7 | 168.473 | | | |
| major | 3 | 146.796 | 4 | 21.677 | 1.294e-31|
| gender | 1 | 10.661 | 3 | 11.017 | 0.001 |
We can check for goodness of fit with either the deviance or Pearson GOF tests.

For this example, the independence model doesn’t seem to fit properly. The deviance test gives

\[
> \text{pchisq}(\text{deviance(business.ind)}, \text{df.residual(business.ind)}, \\
\quad \text{lower.tail}=\text{F})
\]

[1] 0.01163662

The Pearson test for two way tables can be calculated by

\[
> \text{business.tab}
\]

<table>
<thead>
<tr>
<th>major</th>
<th>gender</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>Female</td>
<td>68</td>
<td>56</td>
</tr>
<tr>
<td>Administration</td>
<td>Male</td>
<td>91</td>
<td>40</td>
</tr>
<tr>
<td>Economics</td>
<td>Female</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Finance</td>
<td>Male</td>
<td>61</td>
<td>59</td>
</tr>
</tbody>
</table>
> chisq.test(business.tab)

 Pearson's Chi-squared test

data: business.tab X-squared = 10.8267, df = 3, p-value = 0.0127

Warning message: Chi-squared approximation may be incorrect in: chisq.test(business.tab)

where business.tab is the 2-way table of counts.