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Three-way Contingency Tables

Example: Classroom Behaviour (Everitt, 1977, page 67)

97 students were classified on three factors

• X: Teacher’s rating of classroom behaviour (behaviour) - non deviant
or deviant

• Y : Risk index based on home conditions (risk) - not at risk or at risk

• Z: Adversity of school conditions (adversity) - low, medium, or high

Adversity Low Medium High

Risk Not at Risk At Risk Not at Risk At Risk Not at Risk At Risk

Non Deviant 16 7 15 34 5 3

Deviant 1 1 3 8 1 3
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Mimicing the earlier notation, the cell counts nijk are the number
observations where X = xi, Y = yj, Z = zk where i = 1, . . . , I; j =
1, . . . , J ; k = 1, . . . , K.

The question of interest is what is the relationship between X, Y , and Z. In
the example, the relationship between behaviour, risk, and adversity.

To examine this, we will examine the set of hierarchical log linear models
on πijk, where

πijk = P [X = xi, Y = yj, Z = zk]; µijk = nπijk

Remember in hierarchical models, if an interaction is contained in the model,
all lower order interactions and main effects must also be contained in the
model.

In the case of only two factors, there are only two models of usual interest,
the saturated and independence (homogeneity) models.
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When there are three or more factors, the classes of models in much more
interesting.

In what follows, one notation that is used to describe a model is based on
the highest order interactions in the model such that all terms in the model
are implied. For example

(XY, XZ)

describes the model with the XY and XZ interactions, and the X, Y ,
and Z main effects. This notation relates to compact forms for writing the
models in R. This model in R could be written as

n ~ X*Y + X*Z
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Saturated: (XY Z)

log πijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λY Z

jk + λXY Z
ijk

In this case there is no nice relationship between the three variables. All the
information about cell i, j, k is given by the count nijk.

The fits for this model satisfy

π̂ijk =
nijk

n
; µ̂ijk = nijk
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The number of parameters to be fit are

Parameters # terms

λ 1

λX
i I − 1

λY
j J − 1

λZ
k K − 1

λXY
ij (I − 1)(J − 1)

λXZ
ik (I − 1)(J − 1)

λY Z
jk (J − 1)(K − 1)

λXY Z
ijk (I − 1)(J − 1)(K − 1)

Total IJK

As with the two-way models, there are constraints that need to be considered
when parameterizing the λs, which is where the −1 terms come in the above
table.
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As the total number of parameters in the model = the number of cells in
the table, the degrees of freedom for this model is 0.

All the other models to be considered are subsets of this model where
different combinations of the λs are set to 0.
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Homogeneous association: (XY,XZ, Y Z)

This model is derived by setting all λXY Z
ijk = 0, giving

log πijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λY Z

jk

For this model, the MLE equations imply

µ̂ij+ = nij+ µ̂i+k = ni+k µ̂+jk = n+jk

So we can figure out what happends when we collapse over one variable.

However there are no direct estimates for µ̂ijk. To get these you need some
sort of iterative scheme, such as Newton-Raphson, iteratively reweighted
least-squares, or iterative proportional fitting.

Homogeneous association: (XY, XZ, Y Z) 7



Interpretation of this model: Since the λXY Z
ijk in the saturated model

measures the difference between 2-factor effects attributable to a third
variable, setting all λXY Z

ijk = 0 describes a table with constant 2-factor
effects, though not necessarily 0.

Can think of this as a partial association model.

Suppose the model holds. Lets fix a level Z = zk and look at an odds ratio
involving X and Y .

φ(ii′)(jj′)|k = log
µijkµi′j′k
µi′jkµij′k

= log
πijkπi′j′k
πi′jkπij′k

= λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λY Z

jk

+ λ + λX
i′ + λY

j′ + λZ
k + λXY

i′j′ + λXZ
i′k + λY Z

j′k

− λ− λX
i′ − λY

j − λZ
k − λXY

i′j − λXZ
i′k − λY Z

jk

− λ− λX
i − λY

j′ − λZ
k − λXY

ij′ − λXZ
ik − λY Z

j′k

= λXY
ij − λXY

i′j − λXY
ij′ + λXY

i′j′
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First note that this does not depend on k, just on i, i′, j, j′.

There are three sets of these partial association measures for a three-way
table, one for each variable conditioned on.

For the school behaviour example, lets examine the relationship between
behaviour and risk for each level of adversity.

Adversity Low Medium High

Risk Not at Risk At Risk Not at Risk At Risk Not at Risk At Risk

Non Deviant 16 7 15 34 5 3

Deviant 1 1 3 8 1 3

φ̂Low =
16× 1
1× 7

= 2.29; φ̂Med =
15× 8
3× 34

= 1.18; φ̂High =
5× 3
1× 3

= 5

While their appears to be some difference between these, remember that
the sample sizes are small.
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Adversity Low Medium High

φ̂ 0.83 0.16 1.61

SE(φ̂) 1.24 0.70 1.19

For this model df = (I−1)(J−1)(K−1), which happens to be the number
of λs set to zero in the saturated log linear model.
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Conditional independence: (XY,XZ), (XY, Y Z), or
(XZ, Y Z)

There are three different models of this form, which can be derived by
dropping the three-factor interactions and one set of two-factor interactions.

One of the possible forms (for the model (XY, Y Z)) is

log πijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λY Z
jk

in this case the λXY Z
ijk s and the λXZ

ik s are all set to zero.

The degrees of freedom for this model is (I − 1)(K− 1)J . Again this is the
number of λs set to zero.

Models of this form correspond to conditional independence of the variables.
For the example (XY, Y Z), X and Z are conditionally independent given
the level of Y .
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It can be shown that

P [X = xi, Z = zk|Y = yj] = P [X = xi|Y = yj]P [Z = zk|Y = yj]

for each level of Y under this model.

One way of thinking of this, if you look at the J different I × K tables
you get by fixing the level of Y and classifying by X and Z, each of them
exhibits independence.

So one consequence of this is that

P [X = xi, Y = yj, Z = zk] = P [X = xi|Y = yj]P [Z = zk|Y = yj]P [Y = yj]

(actually showing that this relationship holds proves the conditional
independence assumption)

So given the labeling of X, Y , and Z, (XY, Y Z) corresponds to behaviour
being independent of adversity given the risk status of the child.
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Note that this is not equivalent to behaviour and adversity being
independent. This form of independence fails as P [X = xi|Y = yj] and
P [Z = zk|Y = yj] could have different forms for each level yj.

If these vary

P [X = xi, Z = zk] =
J∑

j=1

P [X = xi|Y = yj]P [Z = zk|Y = yj]P [Y = yj]

6= P [X = xi]P [Z = zk]

This model does have explicit solutions. First the MLE conditions imply
that

µ̂ij+ = nij+; µ̂+jk = n+jk

Next it can be shown that

µ̂ijk =
nij+n+jk

n+j+
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What’s the difference between (XY,XZ, Y Z) and (XZ, Y Z)?

In (XY,XZ, Y Z), the values

φ(ii′)(jj′)|k = c(ii′)(jj′)

take the same value for each k. (They will change when i, i′, j, j′ change)

For the model (XZ, Y Z),

φ(ii′)(jj′)|k = 1

for all k.

This model corresponds to the hypothesis being testing by the Mantel-
Haenszel test.
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Partial independence: (XY,Z), (XZ, Y ), or (Y Z,X)

The next model along the line comes from dropping the three-factor
interaction and two of the two-factor interactions. Another way of thinking
of it is that the model only includes one two-factor interaction and the main
effects of all variables.

Again there are three different models of this form, one for each of the
possible two-way interactions. The general form of the model is

log πijk = λ + λX
i + λY

j + λZ
k + λY Z

jk

(this is for (X, Y Z)).

This model has df = (I − 1)(JK − 1)

In these models, one variable is independent of the combination of the other
two variables. So (X,Y Z) corresponds to behaviour being independent
of the risk, adversity combinations.
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So under this model

P [X = xi, Y = yj, Z = Zk] = P [X = xi]P [Y = yj, Z = Zk]

In this model Y and Z are dependent, even after marginalizing out X.
However X and Y are independent (similarly for X and Z). This holds
since

P [X = xi, Y = yj] =
K∑

k=1

P [X = xi, Y = yj, Z = Zk]

=
K∑

k=1

P [X = xi]P [Y = yj, Z = Zk]

= P [X = xi]
K∑

k=1

P [Y = yj, Z = Zk]

= P [X = xi]P [Y = yj]
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For this model the following relationships between the fits can be shown

µ̂i++ = ni++ µ̂+jk = n+jk

and
µ̂ijk =

ni++n+jk

n+++
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Mutual independence: (X,Y, Z)

This model only includes the three sets of main effects. The form of the
log linear model is

log πijk = λ + λX
i + λY

j + λZ
k

For this model df = IJK − {(I − 1) + (J − 1) + (K − 1) + 1} = IJK −
I − J −K − 2.

Under this model, there is mutual independence of all three variables. From
this it can be shown that

µ̂i++ = ni++ µ̂+j+ = n+j+ µ̂++k = n++k

and
µ̂ijk =

ni++n+j+n++k

(n+++)2
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Since all three variables are mutually independent, it follows that any pair
must be as well.
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Noncomprehensive

These models have the feature that at least one variable is not included.
Two examples are (XY ) and (X, Y ).

One way of thinking of these models is collapsing the table over the dropped
variable. So (XY ) and (X, Y ) involve collapsing over Z, i.e. look at the
two-way table with counts nij+.

In both cases
µijk =

µij+

K
However the form of µij+ will vary depending on the form of association
between X and Y .
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Comparing Fits in Example

Model df X2
p X2 p-value(X2)

(BRA) 0 0 0 1

(BR, BA, RA) 2 0.93 0.94 0.624 "
(BR, BA) 4 11.17 11.32 0.023

(BR, RA) 4 4.51 4.12 0.390 "
(BA, RA) 3 1.87 1.90 0.593 "
(BR, A) 6 15.07 14.98 0.020

(BA, R) 5 12.64 12.76 0.026

(RA, B) 5 6.19 5.56 0.351 "
(B, R, A) 7 17.30 16.42 0.022

So there appear to be 4 models that seem to fit adequately.
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The four models correspond to

• (BR, BA, RA): conditional odds ratios are the same. In particular
the relationship between behaviour and risk is the same for each
level of adversity. Similarly the relationship between behaviour and
adversity is the same for each risk level

• (BR, RA): given risk level, behaviour and adversity are independent

• (BA, RA): given adversity level, behaviour and risk are independent

• (RA, B): behaviour is independent of risk and adversity

However do we get a significantly worse fit with the smaller models? Lets
compare the nested models by the drop in deviance test.
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> anova(behave.xy.xz.yz, behave.xy.yz, test=’Chisq’)
Analysis of Deviance Table

Model 1: n ~ (behaviour + risk + adversity)^2
Model 2: n ~ behaviour * risk + risk * adversity
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 0.9428
2 4 4.1180 -2 -3.1752 0.2044

> anova(behave.xy.xz.yz, behave.xz.yz, test=’Chisq’)
Analysis of Deviance Table

Model 1: n ~ (behaviour + risk + adversity)^2
Model 2: n ~ behaviour * adversity + risk * adversity
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 0.94285
2 3 1.90396 -1 -0.96112 0.32691

These two tests imply we don’t need all three interactions
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> anova(behave.xy.xz.yz, behave.yz.x, test=’Chisq’)
Analysis of Deviance Table

Model 1: n ~ (behaviour + risk + adversity)^2
Model 2: n ~ risk * adversity + behaviour
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 0.9428
2 5 5.5603 -3 -4.6175 0.2020

> anova(behave.xy.yz, behave.yz.x, test=’Chisq’)
Analysis of Deviance Table

Model 1: n ~ behaviour * risk + risk * adversity
Model 2: n ~ risk * adversity + behaviour
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 4 4.1180
2 5 5.5603 -1 -1.4423 0.2298
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> anova(behave.xz.yz, behave.yz.x, test=’Chisq’)
Analysis of Deviance Table

Model 1: n ~ behaviour * adversity + risk * adversity
Model 2: n ~ risk * adversity + behaviour
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 3 1.9040
2 5 5.5603 -2 -3.6563 0.1607

These three tests imply that the partial independence seems reasonable.

The reason for doing the model comparisons here in addition to the goodness
of fit tests is that drop in deviance tests tend to give better information
about the significance of fits.

It is possible to have two nested models, both with insignficant goodness
of fit tests, but the drop in deviance test suggest that the smaller model is
not adequate for describing the situation.
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Note that the mutual independence model does not fit, implying association
between risk and adversity.

Let collapse across behaviour, giving the table

Low Medium High Total

Not at Risk 17 18 6 41

At Risk 8 42 6 56

Total 25 60 12 97

> anova(behave.y.z, behave.yz, test=’Chisq’)
Analysis of Deviance Table

Model 1: n ~ risk + adversity
Model 2: n ~ risk * adversity
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 8 60.849
2 6 49.990 2 10.859 0.004
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This implies that there is an association between risk and adversity.

Note that the test done above is equivalent to the test

> anova(behave.x.y.z, behave.yz.x, test=’Chisq’)
Analysis of Deviance Table

Model 1: n ~ behaviour + risk + adversity
Model 2: n ~ risk * adversity + behaviour
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 7 16.4192
2 5 5.5603 2 10.8589 0.0044

This is an example showing that it ok to collapse across a variable that is
independent of the rest.

Comparing Fits in Example 27



Describing Independence Relationships Graphically

There is an approach to describing the independence relationships in a
model based on graph theory. The set of hierarchical log linear models
for describing contingency tables are examples of graphical models, whose
probability structure can be described by a graph.

The idea is that the factors in a model are used to give the nodes of a graph
and interaction terms in the model give the edges.

Consider the model (XY, Y Z). This can be
described by the graph,
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Similarly the model (X,Y Z) can be described
by the graph,

To describe determine is a pair of variables are
independent, you need to see if there is a path
in the graph joining the variables. If there
is, the variables are not independent. If not,
independent

So based on the graph just to the above right,
X is not independent of Y or Z.
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However for this model, we can see that X is
independent of Y and Z, but that Y and Z
are associated.

Conditional independence is examined by looking to see if a set of nodes
separate two other nodes (or two other sets of nodes).

In this graph, the nodes for X and Z
are separated by the nodes Y and W .
So this graph corresponds to X and
Z being conditionally independent,
given Y and W .

However X is not conditionally
independent of Z given only Y since
I can go from X to Z without having
to go through the conditioning set.
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Note that graphs are not unique. There
are cases where different models give the
same graphs.

For example the models (XY,XZ, Y Z)
and (XY Z) are both described by the
graph.

Note that these graphical ideas are quite general and can be used in many
situations. For example, in large Bayesian models, the graphical structures
can be used to help design Gibbs samplers, as they immediately show what
variables need to be conditioned on in each step.

Getting back to log-linear models on contingency tables, these graphs can
be used to help determine whether closed form solutions for µ̂ exist. As
models get more complicated, often the µ̂ need to be determined by iterative
scheme, not by nice formulas like (for the model (X,Y Z))

µ̂ijk =
ni++n+jk

n+++
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