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Gamma Distribution

One form of the gamma density is

f(y; ν, λ) =
yν−1e−λy

λνΓ(ν)

Under this parametrization

E[Y ] = νλ = µ Var(Y ) = νλ2 =
µ2

ν

Based on this, we can reparameterize this distribution giving the density
function,

f(y; µ, ν) =
1

Γ(ν)
ν

µ

(
νy

µ

)ν−1

e−yν/µ

Gamma Distribution 1



One feature of this distribution is that it has a constant coefficient of
variation

CV (Y ) =
σ

µ
=

1√
ν

So instead of a constant standard deviation, as with the normal distribution,
we have a constant relative standard deviation.

This fits into the generalized linear model framework nicely with

• g(µi) = Xiβ

• Var(yi) = φµ2
i , where φ = 1

ν

Note that this can easily be extended to a weighted situation. In this case,
the variance satisfies

Var(yi) = φ
µ2

i

wi

where the wi are known weights.
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This situation could occur when the observed yis are averages of wi

observations.

Note that the gamma distribution is also skewed

E[(Y − µ)3] =
2µ3

ν2
> 0

It can be shown, that as ν → ∞ the gamma distribution approaches a
normal distribution.

So instead of transforming your ys, assuming a gamma distribution can help
with skewness problems, particularly when σ ∝ µ.
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Example: Car Insurance Claims (McCullagh and Nelder, section 8.4.1)

The data involve average claims for damage for privately owned and
comprehensively insured vehicles in 1975. The averages given are in pounds
sterling, adjusted for inflation (data reported in 1980). Three factors are
thought likely to affect the average claim.

• Policyholder’s age (policy): 17-20, 21-24, 25-29, 30-34, 35-39, 40-49,
50-59, 60+ (8 levels)

• Car group (group): A, B, C, and D (4 levels)

• Vehicle age (vehicle): 0-3, 4-7, 8-9, 10+ (4 levels)

The number of claims mijk on which each average is based varies widely
from 0 to 434. Since they vary widely, they should be included as weights
in any analysis.
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Based on this plot there are some clears patterns that stand out (at least
to me)

• Drivers under the age of 30 tend to have higher claims

• Claims tend to increase as car group goes from A to D

• Older cars tend to have lower claims

An early analysis by (Baxter et al, 1980) fit the normal based model

Call: glm(formula = claim ~ policy + group + vehicle,
family = gaussian(), data = claims, weights = m,
subset = m > 0)

Deviance Residuals:
Min 1Q Median 3Q Max

-942.93 -136.69 -26.45 129.48 993.89
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 298.666 31.579 9.458 7.39e-16 ***
policy21-24 -5.596 33.944 -0.165 0.869359
policy25-29 -24.639 31.920 -0.772 0.441858
policy30-34 -33.225 31.719 -1.047 0.297195
policy35-39 -87.888 31.637 -2.778 0.006441 **
policy40-49 -66.987 31.112 -2.153 0.033515 *
policy50-59 -63.347 31.249 -2.027 0.045085 *
policy60+ -63.147 31.572 -2.000 0.047973 *
groupB -2.462 9.384 -0.262 0.793489
groupC 34.184 10.026 3.410 0.000913 ***
groupD 108.660 12.235 8.881 1.51e-14 ***
vehicle4-7 -24.206 6.690 -3.618 0.000452 ***
vehicle8-9 -76.752 11.121 -6.901 3.56e-10 ***
vehicle>10 -126.635 14.746 -8.588 6.95e-14 ***
---
(Dispersion parameter for gaussian family taken to be 82604.51)
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This analysis agrees with the patterns suggested in the box plots.

When looking at the residual plot,
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the constant CV assumption σ ∝ µ doesn’t look unreasonable, as the plot
has a rough megaphone shape.
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When fitting a gamma model, the log likelihood has the form (assuming ν
a known constant)

l(β) =
n∑

i=1

ν(−yi/µi − log µi)

If there are weighted observations, as there are in the example, the log
likelihood gets adjusted to

l(β) =
n∑

i=1

wiν(−yi/µi − log µi)
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The usual form for the deviance (assuming weighted observations) is

X2 = −2
n∑

i=1

νwi

(
log

yi

µ̂i
− yi − µ̂i

µ̂i

)

This will take the value 0 when there is a perfect fit (i.e. µ̂i = yi)

The canonical link for the gamma is the reciprocal function
(link="inverse"). This can be seen from the log likelihood function

l(β) =
n∑

i=1

ν(−yi/µi − log µi)

One potential problem with this link function is that it can lead to negative
fitted µ̂i. One approach to dealing with this problem is to constrain the β̂
to give positive µ̂s in the ranges of Xs of interest.
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An approach is to use the log link (link="log" in R), as this will enforce
µ̂i > 0, which is a requirement of the gamma distribution.

The third link available in R is the identity link (link="identity").

Fitting the example data with the canonical inverse link gives

Call:
glm(formula = claim ~ policy + group + vehicle, family = Gamma(),

data = claims, weights = m, subset = m > 0)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.275886 -0.486974 -0.008689 0.588895 3.285718
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.411e-03 4.179e-04 8.161 6.30e-13 ***
policy21-24 1.014e-04 4.362e-04 0.232 0.816659
policy25-29 3.500e-04 4.124e-04 0.849 0.397929
policy30-34 4.623e-04 4.106e-04 1.126 0.262639
policy35-39 1.370e-03 4.192e-04 3.268 0.001447 **
policy40-49 9.695e-04 4.046e-04 2.396 0.018281 *
policy50-59 9.164e-04 4.079e-04 2.247 0.026687 *
policy60+ 9.201e-04 4.157e-04 2.213 0.028954 *
groupB 3.765e-05 1.687e-04 0.223 0.823772
groupC -6.139e-04 1.700e-04 -3.611 0.000463 ***
groupD -1.421e-03 1.806e-04 -7.867 2.84e-12 ***
vehicle4-7 3.663e-04 1.009e-04 3.632 0.000430 ***
vehicle8-9 1.651e-03 2.268e-04 7.281 5.45e-11 ***
vehicle>10 4.154e-03 4.423e-04 9.391 1.05e-15 ***
---
(Dispersion parameter for Gamma family taken to be 1.209015)
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Null deviance: 649.87 on 122 degrees of freedom
Residual deviance: 124.78 on 109 degrees of freedom
AIC: 84702

Note that this analysis agrees with the basic pattern seen in the boxplots of
the data. With the inverse link

µ̂ijk =
1

µ̂0 + α̂i + β̂j + γ̂k

a negative α̂, β̂, or γ̂ leads to increasing µ̂.

So the switching of signs here from the normal based analysis earlier is to
be expected and consistent with it.
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Estimating φ and ν

As mentioned before

Var(yi) = φµ2
i =

µ2
i

ν

So any inference will need to account for this parameter.

As with the quasi likelihood analyzes with binomial and Poisson like data,
we can use the Pearson residuals to estimate φ as

φ̂ =
1

n− p

n∑

i=1

(
yi − µ̂i

µ̂i

)2
n→∞−→ φ

where p is the number of parameters estimated.

This is the estimate that R gives. From this, we can estimate the coefficient
of variation for a single observation by

ĈV (yi) =
√

φ̂
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Its possible to base estimates of φ on the deviance, X2, instead of the
Pearson statistic. However they tend to work less well. You can get into
problems with yi very close to 0 (it blows up). Also there are problems
with consistency of estimators, particularly with estimating the coefficient
of variation

√
φ.

However the method of moment estimate based on X2
p will lead to consistent

estimators of φ and
√

φ.

For the example, φ̂ = 1.21, ĈV (yi) = 1.1.

Note that ν = 1
φ is the standard shape parameter of the gamma distribution.

For the example ν̂ = 0.83, suggesting that each observation looks roughly
exponential, which is the case when ν = 1.
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Inference Procedures

Inference in this case is similar to before. First, if φ is known

z =
β̂i − βi

SE(β̂)
approx.∼ N(0, 1)

Since φ isn’t usually known and thus estimated, inference on individual βs
is based on tn−p distributions, similarly to the quasi-binomial and quasi-
Poisson analyzes discussed earlier.

Also, as before, since there is more uncertainty since φ is unknown, using a
heavier tailed distribution is not unreasonable.

For examining multiple βs, i.e. comparing models, we again will mimic the
approach taken in the quasi-likelihood analyzes.
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As before, if φ is known,

X2(Reduced Model)−X2(Full Model)
approx.∼ φχ2

df1

where df1 is the difference in the number of parameters fit in the two
models. However since φ isn’t known, inference will be based on

F =
(X2(Reduced Model)−X2(Full Model))/df1

X2
p(Full Model)/df2

=
(X2(Reduced Model)−X2(Full Model))/df1

φ̂

where df2 = n − p is the degrees of the freedom for the residual deviance.
This should be compared to and Fdf1,df2 distribution.

For example, we can compare the main effects model with the model with
containing all 2-way interactions (assuming inverse link) as follows
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> anova(claims.inv, claims.inv2, test=’F’)
Analysis of Deviance Table

Model 1: claim ~ policy + group + vehicle
Model 2: claim ~ (policy + group + vehicle)^2
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 109 124.783
2 58 65.585 51 59.198 1.0487 0.4285

In this case, there is little evidence that including the 2-way interactions
improves the fit. The only interaction that looks somewhat interesting is
the policy:group, and it doesn’t look to be significant
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> anova(claims.inv, claims.inv3, test=’F’)
Analysis of Deviance Table

Model 1: claim ~ policy + group + vehicle
Model 2: claim ~ policy + group + vehicle + policy:group
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 109 124.783
2 88 90.749 21 34.034 1.43 0.1265

If we were to check the main effects, they would all appear to be important.
Though not quite right since the design isn’t quite balanced to the the empty
cells, and thus the necessary contrasts aren’t orthogonal, the ANOVA table
which follows shows the basic pattern.
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> anova(claims.inv, test=’F’)
Analysis of Deviance Table

Model: Gamma, link: inverse

Response: claim

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 122 649.87
policy 7 82.18 115 567.69 9.7101 2.373e-09 ***
group 3 228.31 112 339.38 62.9462 < 2.2e-16 ***
vehicle 3 214.60 109 124.78 59.1672 < 2.2e-16 ***
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Residual Analysis and Model Checking

The deviance residuals for the gamma model are

Dresi = sign(yi − µ̂i)

√
−2

(
log

(
yi

µ̂i

)
− yi − µ̂i

µ̂i

)

The Pearson residuals are

Presi =
yi − µ̂i

µ̂i

As before, these can be used to check for outliers and adequacy of the mean
model. For the example,

Residual Analysis and Model Checking 21



100 200 300 400 500

−
3

−
2

−
1

0
1

2
3

Gamma Model − Inverse Link

Fitted Average Claim

D
ev

ia
nc

e 
R

es
id

ua
l

100 200 300 400 500

−
3

−
2

−
1

0
1

2
3

4

Gamma Model − Inverse Link

Fitted Average Claim

P
ea

rs
on

 R
es

id
ua

l
Doesn’t look too bad, though maybe we over corrected on the variance
(slight funnel shape). Don’t see any obvious curvature, which would suggest
that

µijk =
1

µ0 + αi + βj + γk

is a poor model.
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There are a few outliers, mainly occurring with young drivers and car type
D.

Now lets look at what happens with the other links available in R.

100 150 200 250 300 350 400

−
3

−
2

−
1

0
1

2
3

Gamma Model − Log Link

Fitted Average Claim

R
es

id
ua

l

100 150 200 250 300 350 400
−

3
−

2
−

1
0

1
2

3

Gamma Model − Log Link

Fitted Average Claim

P
ea

rs
on

 R
es

id
ua

l

Looks about the same. If there was a problem with the inverse, there is
probably a similar problem here.
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Probably looks a bit better. The outliers still exist, but there is less of a
funnel shape.

While the residual plots for the three different link functions look similar,
there are difference, as can be seen by comparing the fitted values for the
different models.
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Note that the biggest difference in the fits occurs with inverse and identity
links. This is not surprising as 1

x is a stronger transformation than log x.
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Checking for goodness of fit is more difficult in the case of continuous
responses. First the goodness of fit type tests available in the binomial and
Poisson cases aren’t available here. The χ2 distributional approximations
don’t work here since

• φ unknown

• Even is φ is known, its usually not a good approximation, since often
there are few repeated observations.

Generally to check you need to look at residual plots and comparing models.
For example, with the insurance claims data, adding the 2-way interaction
terms doesn’t give a significantly better fit.

If there are repeated observations (i.e. multiple observations with the same
levels of the predictor values), we can do a bit better.

The idea is to fit a different mean for each unique combination of the
predictor variables (the full model). This is compared to the model of
interest (the reduced model) with the F test discussed earlier.
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In the case of normal responses, this is just the standard lack of fit F test.

For the claims example, this test won’t work since there are no repeated
observations. If you try calculating the residual degrees of freedom you get
0. Also the estimate of φ̂ for the full model here is undefined (= 0

0)
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