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Two-Factor Random Effects Model

Example: Miles per Gallon (Neter, Kutner, Nachtsheim, & Wasserman,
problem 24.15)
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An automobile manufacturer
studied the effects of differences
between drivers (Driver) and
cars (Car) on gasoline consumption.
Four drivers and 5 cars of the
same model were both selected
at random. Each driver drove
each car twice over a 40 mile test
course and the miles per gallon
(MPG) were recorded.

In this example, it seems
reasonable to treat driver and car
as random effects.
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One possible model for this data is

yijk = µ + αi + βj + (αβ)ij + εijk

αi
iid∼ N(0, σ2

α)

βj
iid∼ N(0, σ2

β)

(αβ)ij
iid∼ N(0, σ2

αβ)

εijk
iid∼ N(0, σ2)

For what follows, lets assume a balance design, with a levels for factor A
(Driver), b levels for factor B (Car), and m observations for each (i, j)
combination.

(Of course you could have an unbalanced designed, however the following
formulas get really ugly.)
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For this design, the expected mean squares satisfy

Mean Square df E[MS]
MSA a− 1 σ2 + bmσ2

α + mσ2
αβ

MSB b− 1 σ2 + amσ2
β + mσ2

αβ

MSAB (a− 1)(b− 1) σ2 + mσ2
αβ

MSE (m− 1)ab σ2

Based on these expected mean squares, we estimate the various variance
components as follows

• σ2:

σ̂2 = MSE

• σ2
αβ:

σ̂2
αβ =

MSAB −MSE

m
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• σ2
α:

σ̂2
α =

MSA−MSAB

bm

• σ2
β:

σ̂2
β =

MSB −MSAB

am

For the example, these happen to be
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> mpg.rr <- lmer(MPG ~ 1 + (1|Driver) + (1|Car) + (1|Driver:Car) , data=mpg)

> mpg.rr
Linear mixed-effects model fit by REML
Formula: MPG ~ 1 + (1 | Driver) + (1 | Car) + (1 | Driver:Car)

Data: mpg
AIC BIC logLik MLdeviance REMLdeviance

94.77908 101.5346 -43.38954 89.67671 86.77908
Random effects:
Groups Name Variance Std.Dev.
Driver:Car (Intercept) 0.014063 0.11859
Car (Intercept) 2.934312 1.71298
Driver (Intercept) 9.322437 3.05327
Residual 0.175750 0.41923
number of obs: 40, groups: Driver:Car, 20; Car, 5; Driver, 4

Fixed effects:
Estimate Std. Error t value

(Intercept) 30.0475 1.7096 17.576
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So similarly to the single random effect case, we can use the ANOVA table
to help us to estimate the variance components. However we need to know
the structure of the expected mean squares. Different assumptions about
which terms are to be included in the model and which factors are random
and which are fixed, will lead to different mean square errors, and thus
different estimates for the variance components.

The resulting structure also affects tests on the variance components.

If all of the factors are fixed, the three standard F tests are

FA =
MSA

MSE
FB =

MSB

MSE
FAB =

MSAB

MSE

For the test of the interaction (H0 : σ2
αβ),

FAB =
MSAB

MSE

since both mean squares have the same expectation under H0.
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For the example, this can be examined in R by

> mpg.rr <- lmer(MPG ~ 1 + (1|Driver) + (1|Car) + (1|Driver:Car),
data=mpg)

> mpg.a.rr <- lmer(MPG ~ 1 + (1|Driver) + (1|Car), data=mpg)

> anova(mpg.rr, mpg.a.rr)
Data: mpg
Models:
mpg.a.rr: MPG ~ 1 + (1 | Driver) + (1 | Car)
mpg.rr: MPG ~ 1 + (1 | Driver) + (1 | Car) + (1 | Driver:Car)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mpg.a.rr 3 92.863 97.929 -43.431
mpg.rr 4 94.779 101.535 -43.390 0.0836 1 0.7725

Note that the R approach using the lme4 package is to use χ2 based
likelihood ratio tests instead of F tests. Asymptotically these will give the
similar results.

Two-Factor Random Effects Model 7



However for the main effects, the tests aren’t valid. For the test on factor
A, under H0 : σ2

α,

E[MSA] = σ2 + mσ2
αβ E[MS] = σ2

so the F used in the fixed effects case will not work here.

Instead

FA =
MSA

MSAB

will work as both mean squares have the same expectation under the null.

Similarly

FB =
MSB

MSAB
can be used to examine H0 : σ2

β

While these are valid test statistics, whether testing the corresponding
hypotheses is usually questionable. There is usually no reason to test a
main effect when an interaction containing that main effect is included in
the model.
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Two-Factor Mixed Model

As suggested before, it is possible to combine fixed and random factors in
a model. For example, suppose that driver is a random effect and car is a
fixed effect. This might occur if we are considering a single Zipcar location
that only has 5 cars. In that case, the company might be interested in the
individual cars and not some larger population of cars.

In this case we can model the data as

yijk = µ + αi + βj + (αβ)ij + εijk

αi
iid∼ N(0, σ2

α)

βj fixed but unknown constants, subject to
∑

βj = 0

(αβ)ij
iid∼ N(0, σ2

αβ)

εijk
iid∼ N(0, σ2)
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(Note the constraint on the βj was chosen to make the expect mean square
formula nicer.)

Usually when you include interactions involving fixed and random effects,
the interactions are considered as random effects.

The expected mean squares for this model satisfy

Mean Square df E[MS]
MSA a− 1 σ2 + bmσ2

α + mσ2
αβ

MSB b− 1 σ2 + mσ2
αβ + ma

P
β2

j

b−1

MSAB (a− 1)(b− 1) σ2 + mσ2
αβ

MSE (m− 1)ab σ2

Note that this table of mean squares doesn’t match what you will see in
other and software packages. Other books discuss a slightly different form
of the mixed model, sometimes referred to as the restricted model.
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In this case, they assume that

∑

i

(αβ)ij = 0 for each j

The unrestricted model was chosen as it matches with the function lmer.
Also Dean and Vos argue that usually the unrestricted model makes for
sense (what really is the correct way to set up the restrictions).

For a further discussion of the restricted form of the model, see Neter,
Kutner, Nachtsheim, and Wasserman or Montgomery.

Under the unrestricted model, the estimated variance components are

• σ2:
σ̂2 = MSE

• σ2
αβ:

σ̂2
αβ =

MSAB −MSE

m
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• σ2
α:

σ̂2
α =

MSA−MSAB

bm

> options(contrasts=c("contr.sum","contr.poly"))
> mpg.rf <- lmer(MPG ~ Car + (1|Driver) + (1|Car:Driver) ,

data=mpg)
> mpg.rf
Linear mixed-effects model fit by REML
Formula: MPG ~ Car + (1 | Driver) + (1 | Car:Driver)

Data: mpg
AIC BIC logLik MLdeviance REMLdeviance

86.69653 98.51868 -36.34826 66.10478 72.69653
Random effects:
Groups Name Variance Std.Dev.
Car:Driver (Intercept) 0.014063 0.11859
Driver (Intercept) 9.322437 3.05327
Residual 0.175750 0.41923
number of obs: 40, groups: Car:Driver, 20; Driver, 4
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Fixed effects:
Estimate Std. Error t value

(Intercept) 30.04750 1.52830 19.6607
Car1 -1.08500 0.14278 -7.5988
Car2 2.20250 0.14278 15.4253
Car3 -2.13500 0.14278 -14.9526
Car4 1.11500 0.14278 7.8090

Correlation of Fixed Effects:
(Intr) Car1 Car2 Car3

Car1 0.000
Car2 0.000 -0.250
Car3 0.000 -0.250 -0.250
Car4 0.000 -0.250 -0.250 -0.250

Note that the constraint chosen on the fixed effects affects their estimates
but not those of the random effects (at least under the default estimation
scheme method="REML"). Switching to contr.treatment gives
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> options(contrasts=c("contr.treatment","contr.poly"))
> mpg.rf2 <- lmer(MPG ~ Car + (1|Driver) + (1|Car:Driver),

data=mpg)
> mpg.rf2
Linear mixed-effects model fit by REML
Formula: MPG ~ Car + (1 | Driver) + (1 | Car:Driver)

Data: mpg
AIC BIC logLik MLdeviance REMLdeviance

83.47765 95.2998 -34.73883 66.10478 69.47765
Random effects:
Groups Name Variance Std.Dev.
Car:Driver (Intercept) 0.014062 0.11859
Driver (Intercept) 9.322436 3.05327
Residual 0.175750 0.41923
number of obs: 40, groups: Car:Driver, 20; Driver, 4
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Fixed effects:
Estimate Std. Error t value

(Intercept) 28.96250 1.53496 18.8686
Car2 3.28750 0.22576 14.5618
Car3 -1.05000 0.22576 -4.6509
Car4 2.20000 0.22576 9.7447
Car5 0.98750 0.22576 4.3741

Correlation of Fixed Effects:
(Intr) Car2 Car3 Car4

Car2 -0.074
Car3 -0.074 0.500
Car4 -0.074 0.500 0.500
Car5 -0.074 0.500 0.500 0.500
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Again we can see whether there is an interaction effect as follows

> anova(mpg.a.rf, mpg.rf)
Data: mpg
Models:
mpg.a.rf: MPG ~ Car + (1 | Driver)
mpg.rf: MPG ~ Car + (1 | Driver) + (1 | Car:Driver)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mpg.a.rf 6 84.780 94.913 -36.390
mpg.rf 7 86.697 98.519 -36.348 0.0836 1 0.7725

Actually this is the same test as with the random effects case, even though
the base models are different. Be careful as this won’t always happen in
more complex cases.
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Combining Continuous Predictors and Random Effects

In the next example, we want to combine a continuous predictor with a
categorical factors, one fixed and one random. Of course we can have
a wide range of different ways we can combine predictors in this sort of
situation.

Example: This dataset, from the S-plus manual and collected by the Dental
School of North Carolina, investigated the distance from the pituitary to
the ptergomaxillary fissure (Distance). There were 27 subjects (Subject)
(16 boys, 11 girls - Sex) each measured at 4 ages (8, 10, 12, 14 - age).

Of interest is the difference between the boys and girls, after accounting for
the effects of age and subject to subject variability.
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So we want to develop a model of the basic form

y = µ + α︸︷︷︸
Sex effect

+ β︸︷︷︸
Subject effect

+ γt︸︷︷︸
Age effect

+ε

Two possible models of this basic form are

• Common age effect:

yit = µ + α(sex)i + βi + γt + εit

βi
iid∼ N(0, σ2

β)

εit
iid∼ N(0, σ2)

In this case, the effect of age is the same for each subject.
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• Subject specific age effect:

yit = µ + α(sex)i + βi + γit + εit

βi
iid∼ N(0, σ2

β)

γi
iid∼ N(γ, σ2

γ)

εit
iid∼ N(0, σ2)

In this case, each subject in the trial has there own slope. As written,
their is a fixed age effect γ and γi − γ describe the the random slope
deviations for each person.

For the first model, the fitted values are
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> orthodont.mix <- lmer(distance ~ Sex + age + (1|Subject),
data=Orthodont)

> orthodont.mix
Linear mixed-effects model fit by REML
Formula: distance ~ Sex + age + (1 | Subject)

Data: Orthodont
AIC BIC logLik MLdeviance REMLdeviance

445.5125 456.241 -218.7563 434.8982 437.5125
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 3.2667 1.8074
Residual 2.0495 1.4316
number of obs: 108, groups: Subject, 27

Fixed effects:
Estimate Std. Error t value

(Intercept) 15.385690 0.895983 17.1718
SexMale 2.321023 0.761412 3.0483
age 0.660185 0.061606 10.7162
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Correlation of Fixed Effects:
(Intr) SexMal

SexMale -0.504
age -0.756 0.000

The second model can be fit by

> orthodont.mix2 <- lmer(distance ~ Sex + age + (1|Subject)
+ (age - 1| Subject), data=Orthodont)

To fit the model, we need to include the fixed effect for age to estimate γ.
The term (age - 1| Subject) is written this way to guarantee that the
random effects for Subject and the age:Subject are independent. If the
(age | Subject) was used, there would be an interaction.

Combining Continuous Predictors and Random Effects 22



> orthodont.mix2
Linear mixed-effects model fit by REML
Formula: distance ~ Sex + age + (1 | Subject) + (age - 1 | Subject)

Data: Orthodont
AIC BIC logLik MLdeviance REMLdeviance

446.6453 460.056 -218.3227 434.0781 436.6453
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 2.172948 1.47409
Subject age 0.009996 0.09998
Residual 1.967260 1.40259
number of obs: 108, groups: Subject, 27; Subject, 27

Fixed effects:
Estimate Std. Error t value

(Intercept) 15.568993 0.861517 18.0716
SexMale 2.011700 0.759759 2.6478
age 0.660185 0.063351 10.4211
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Correlation of Fixed Effects:
(Intr) SexMal

SexMale -0.523
age -0.734 0.000

One potentially important question is whether the subject specific slopes are
needed. Note that the estimate of σ2

γ is very small relative to the estimate
σ2, suggesting that a single slope is adequate.

This is supported by

> anova(orthodont.mix2,orthodont.mix)
Data: Orthodont
Models:
orthodont.mix: distance ~ Sex + age + (1 | Subject)
orthodont.mix2: distance ~ Sex + age + (1 | Subject) + (age - 1 | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
orthodont.mix 4 445.51 456.24 -218.76
orthodont.mix2 5 446.65 460.06 -218.32 0.8672 1 0.3517
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