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Quasi-F Tests

When we get to more than two categorical factors, some times there are
not nice F tests available. For example, consider the 3-way model with 3
random effects (A: a levels, B: b levels, C: c levels) and m observations per
treatment combination. The expected mean squares are

MS df E[MS]

MSA a− 1 σ2 + mbcσ2
α + mcσ2

αβ + mbσ2
αγ + mσ2

αβγ

MSB b− 1 σ2 + macσ2
β + mcσ2

αβ + maσ2
βγ + mσ2

αβγ

MSC c− 1 σ2 + mabσ2
γ + mbσ2

αγ + maσ2
βγ + mσ2

αβγ

MSAB (a− 1)(b− 1) σ2 + mcσ2
αβ + mσ2

αβγ

MSAC (a− 1)(b− 1) σ2 + mcσ2
αγ + mσ2

αβγ

MSBC (a− 1)(c− 1) σ2 + maσ2
βγ + mσ2

αβγ

MSABC (a− 1)(b− 1)(c− 1) σ2 + mσ2
αβγ

MSE (m− 1)abc σ2
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If we want to test H0 : σ2
αβ = 0, we can use

FAB =
MSAB

MSABC

as E[MSAB] = E[MSABC] under H0.

Now consider testing H0 : σ2
α = 0. Looking through the previous table

there is no entry that has the same expectation as E[MSA] has under H0,
i.e. there is nothing satisfying

MSX = σ2 + mcσ2
αβ + mbσ2

αγ + mσ2
αβγ

So we can’t use a test statistic of the form

F =
MSA

MSX
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One alternative is to use a Quasi-F test (also known as Satterthwaite’s
Approximate F test.

The idea is to find a linear combination of mean squares

L̂ = c1MS1 + . . . + chMSh

that has the desired expectation, i.e.

E[L̂] = c1E[MS1] + . . . + chE[MSh]

= MSX

Then the hypothesis can be tested with the test statistic

F ∗∗A =
MSA

L̂
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In this example,

L̂ = MSAB + MSAC −MSABC

will work. Note that there may be multiple possibilities for the denominator
in the F ratio.

This test statistic has an approximate F distribution with a − 1 and df
degrees of freedom where

df =
(c1MS1 + . . . + chMSh)2
(c1MS1)2

df1
+ . . . + (chMSh)2

dfh

Example: A study on daily output of a factory examined three factors,
operators (3 levels), machines (2 levels), and batches (5 levels). For each
treatment combination, 3 observations were taken. The resulting ANOVA
table was generated for this table
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Source of Variation SS df MS

A (operators) 17.3 2 8.65

B (machines) 4.2 1 4.20

C (batches) 24.8 4 6.20

AB 4.8 2 2.40

AC 31.7 8 3.96

BC 12.5 4 3.13

ABC 11.9 8 1.49

Error 137.7 60 2.30

For example to examine the effect of operators, we can use the Quasi-F
statistic

F ∗∗A =
MSA

MSAB + MSAC −MSABC

=
8.65

2.40 + 3.96 + 1.49
= 1.78

Quasi-F Tests 5



The denominator degrees of freedom for this case is

df =
4.872

2.402

2 + 3.962

8 + −1.492

8

= 4.63

Note that this formula will usually give non-integer degrees of freedom.
Rounding to the closest integer is usually fine when working with tables.
Note that many packages will allow non-integer degrees in their probability
functions.

The p-value for this F statistic is 0.267 (=pf(1.78,2,4.63,
lower.tail=F))
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Note that exactly how you deal with these non-integer degrees of freedom
usually doesn’t matter, as exhibited by

> pf(1.78, 2, 4.63, lower.tail=F)
[1] 0.2670347

> pf(1.78, 2, 4, lower.tail=F)
[1] 0.2799474

> pf(1.78, 2, 5, lower.tail=F)
[1] 0.2607598

For the example, if anybody is interested, none of the test are significant.
The smallest p-value (0.094) occurs with the test on the AC interaction.

Quasi-F Tests 7



As mentioned before, it is possible that there is more that one linear
combination L that can be chosen. In the case where that occurs, you
generally want to choose the one that has the least number of terms
involved. If there are two possibilities and they both have the same number
of terms involved, pick the one that avoids low order interactions. This
test tends to work better when the mean square components are close to
estimating the measurement error variance σ2.

One way of figuring out a possible L is to consider the estimate of the
variance component of interest. In the example, to estimate σ2

α, one
estimate is

σ̂2
α =

MSA−MSAB −MSAC + MSABC

mbc
=

MSA− L̂

mbc

Often the L you want to use will come from a relationship like this.
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General Form of the Linear Mixed Model

All the the examples involving random effects, the models can be written in
the general matrix form

Y = Xβ + Zu + ε
[

u

ε

]
∼ N

([
0
0

]
,

[
G 0

0 σ2R

])

where β is the vector of fixed effects and u is the vector of random effects,
X and Z are known design matrices, and G and R are scaled covariance
matrices.

Elements of the matrix G are the variances of the random effects, plus
possibly covariances between the random effects. R is the correlation
matrix of the measurement errors. In the examples discussed so far, both
matrices have been diagonal matrices, but in general they don’t need to be.
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For example, consider a mixed model with one fixed effect (A: 4 levels),
and two random effects (C: 2 levels, D: 3 levels) and 2 observations per
treatment combination and no interactions. Then

βT =
[

µ α1 α2 α3 α4

]

uT =
[

γ1 γ2 δ1 δ2 δ3

]

Z is a 48× 5 matrix of 0s and 1s. In each row there will be two 1s, one in
the first two columns (indicating the C random effect) and one in the last
three columns (indicating the D random effect)

G = diag
(

σ2
γ σ2

γ σ2
δ σ2

δ σ2
δ

)

R = I48
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Restricted Maximum Likelihood - REML

The likelihood function in the random effects case has two components as
the model being fit can be considered as a hierarchical model. The two
components are

Y|u ∼ N(Xβ + Zu, σ2R)

u ∼ N(0, G)

So the likelihood function factors as

L(β, σ2, G) = f(Y|u)f(u)

So the maximum likelihood approach would choose the values of β, σ2, and
G (actually the variances that make up G) that maximize L(β, σ2, G)
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One known “problem” with maximum likelihood in this case is that the
estimates of the variance components are known to have a negative bias.

Consider the case when there is one variance component σ2 and β has p
components. The the MLE of σ2 is

σ̃2 =
SSE

n

However its expection is

E[σ̃2] =
n− p

n
σ2 < σ2

As we have seen before, the easy solutions here is to use

σ̂2 =
SSE

n− p
= MSE
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This solution is a special case of a more general method, Restricted
Maximum Likelihood (REML).

In REML, we use structure that must occur in the residuals (like
∑

ei = 0
in standard regression) to create a correction term in the likelihood and
correct for the bias problems.

For example, for known G and R we get

XTR−1(Y −Xβ̂ − Zû) = 0

and
XTR−1(Y −Xβ̂ − Zû) + G−1û = 0

From these, we get

û = (G−1 − ZTR−1boldZ)−1ZTR−1(Y −Xβ̂)

and
β̂ =

[
XT (R + ZGZT )−1X

]−1
XT (R + ZGZT )−1Y
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Plugging this into the previous equation gives û and the information for the
correction term.

The default estimation method for lmer is REML (method="REML"). It
will also fit by maximum likelihood (method="ML").

To see the effect of the two estimation methods, lets examine the orthodontic
example from the last class.

> orthodont.reml
Linear mixed-effects model fit by REML
Formula: distance ~ Sex + age + (1 | Subject)

Data: Orthodont
AIC BIC logLik MLdeviance REMLdeviance

445.5125 456.241 -218.7563 434.8982 437.5125
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 3.2667 1.8074
Residual 2.0495 1.4316
number of obs: 108, groups: Subject, 27
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Fixed effects:
Estimate Std. Error t value

(Intercept) 15.385690 0.895983 17.1718
SexMale 2.321023 0.761412 3.0483
age 0.660185 0.061606 10.7162

Correlation of Fixed Effects:
(Intr) SexMal

SexMale -0.504
age -0.756 0.000

> orthodont.mle
Linear mixed-effects model fit by maximum likelihood
Formula: distance ~ Sex + age + (1 | Subject)

Data: Orthodont
AIC BIC logLik MLdeviance REMLdeviance

442.8565 453.585 -217.4282 434.8565 437.5526
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Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 2.9932 1.7301
Residual 2.0242 1.4227
number of obs: 108, groups: Subject, 27

Fixed effects:
Estimate Std. Error t value

(Intercept) 15.385690 0.878447 17.5146
SexMale 2.321023 0.732672 3.1679
age 0.660185 0.061225 10.7830

Correlation of Fixed Effects:
(Intr) SexMal

SexMale -0.494
age -0.767 0.000
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In this case, both estimated variance are smaller with maximum likelihood,
particularly the subject to subject variance. Also note that the estimates of
the fixed effects are the same, though their standard errors and correlations
are different.
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