
Inference on Proportions

Statistics 149

Spring 2006

Copyright c©2006 by Mark E. Irwin



Example: Aspirin to Prevent Strokes

This was a study of the use of aspirin to prevent future strokes in patients
with an earlier stroke.

155 people were studied, 78 receiving aspirin, 77 placebo. The results were
as follows

Treatment No Stroke Stroke Total

Aspirin 63 15 78

Placebo 43 34 77

Total 106 49 155

From a quick look at this table, it appears that Aspirin helps prevent strokes.
Lets look at the theory to justify this statement
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Bernoulli and Binomial Sampling

Bernoulli: This distribution is useful for describing the results of a single
trial that is either a success (Prob = π) or a failure (Prob = 1− π = ϕ).

Pr[Y = y] =





π y = 1
1− π u = 0
0 Otherwise

This is the model for flipping a biased coin. Its also the distribution of an
indicator RV. (Denoted by Ber(π))

E[Y ] = π; Var(Y ) = π(1− π); SD(Y ) =
√

π(1− π)
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Binomial: Let Y1, Y2, . . . , Yn be independent Ber(π) RVs. Then

S =
n∑

i=1

Yi

is a binomial RV (Denoted Bin(n, π)). Note that Ber(π) = Bin(1, π)

S is the number of successes in n independent, identical (same π) trials.

So in the example, we have two binomial samples (at least that’s the usual
assumption).

Let Si be the number of people that don’t have a stroke.

1. Aspirin: S1 ∼ Bin(78, π1)

2. Placebo: S2 ∼ Bin(77, π2)

The question about whether aspirin works or not involves investigating the
relationship between π1 and π2.

Bernoulli and Binomial Sampling 3



Let Fi = ni − Xi be the number of strokes under treatment i. Then its
easy to see that

1. Aspirin: F1 ∼ Bin(78, ϕ1) = Bin(78, 1− π1)

2. Placebo: F2 ∼ Bin(77, ϕ2) = Bin(77, 1− π2)

Note in this second case, what we are calling a success (what we are
counting) is actually a failure (i.e. stroke) for a practical purposes.

The PMF for the binomial distribution is

Pr[S = k] =
(

n

k

)
πk(1− π)n−k; k = 0, 1, . . . , n

The moments of the distribution are

E[S] = np; Var(S) = np(1− p); SD(S) =
√

np(1− p)
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For inference purposes

π̂ =
S

n
the sample proportion is usually more useful to work with. It has the
following properties

• E[π̂] = π

• Var(π̂) = π(1−π)
n

• If n is large enough,

π̂
approx.∼ N

(
π,

π(1− π)
n

)

The common rule of thumb for n being large enough is

nπ > 5 and n(1− π) > 5

In general, this approximation works better the closer π is to 0.5.
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Confidence Interval for π
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Standard Interval:

The usual 100(1 − α)% (approximate)
confidence interval for π is given by

π̂ ± z∗α/2

√
π̂(1− π̂)

n

where
P [N(0, 1) ≥ z∗α/2] =

α

2

So a 95% CI for π1 is given by the calculations

π̂ =
63
78

= 0.808

SE(π̃) =

√
0.808(1− 0.808)

78
= 0.0446
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CI = 0.808± 1.96× 0.0446

= 0.808± 0.087

= (0.720, 0.895)

Treatment π̂ 95% CI for π

Aspirin 0.808 0.808± 0.087

Placebo 0.558 0.558± 0.111

With this interval, you need to worry about the sample size considerations
more.

One way to check it is to look at the quantities nL, nU, n(1 − L), and
n(1− U) (based on a interval of the form (L,U)) and check to see if they
are all bigger than 5.
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Now, lets consider the case when S = 1 and n=10. The 95% interval based
on this data set is (-0.0859, 0.2859).

So for small sample sizes and S near 0 or n, the standard interval will
contain a significant part of the interval less than 0 or greater than 1.

So for small sample sizes, we need an alternative procedure.
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Agresti-Coull “Add Two Success and Two Failures” Interval:

This interval is based on an idea of EB Wilson (1927)

Note: This procedure is a bit different than the standard approach. For
large n both procedures give similar answers. However for smaller n, this
procedure tends to work better.

Instead of basing inference on π̂, the quantity

π̃ =
S + 2
n + 4

is used. One way to think of this is to take the original sample and add 2
successes and 2 failures.
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Then an approximate 100(1− α)% confidence interval for π is given by

π̃ ± z∗α/2

√
π̃(1− π̃)

n + 4

So this is the standard interval with modified data.

So a 95% CI for π1 given by the calculations

π̃ =
63 + 2
78 + 4

= 0.792

SE(π̃) =

√
0.792(1− 0.792)

82
= 0.0448
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CI = 0.793± 1.96× 0.0448

= 0.793± 0.088

= (0.705, 0.880)

Treatment π̂ π̃ 95% CI for π

Aspirin 0.808 0.793 0.793± 0.088

Placebo 0.558 0.556 0.556± 0.108

Note that the AC CI for π is not symmetric around π̂, the standard estimate
of π. Instead it is pulled towards 1

2.

This is desirable, since the binomial distribution is not symmetric about its
mean, unless π = 1

2.

The asymmetry matches the skewness of the binomial distribution.
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This adjustment from the standard interval tends to give better coverage
(closer to desired confidence).
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For larger sample sizes, the widths of the AC and the standard intervals are
similar, as can be seen in this example. However the AC interval is shifted
at bit towards 0.5.

Treatment Standard Interval AC Interval

Aspirin 0.808± 0.087 0.793± 0.088

Placebo 0.558± 0.111 0.556± 0.108
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A Motivation for this interval

One approach to getting this interval is to approximate a Bayesian credibility
interval.

• Prior: π ∼ Beta(2, 2)

• Likelihood: S|π ∼ Bin(n, π)

• Posterior: π|S ∼ Beta(S + 2, n− S + 2)

The posterior mean and variance are

E[π|S] =
S + 2
n + 4

= π̃

Var(π|S) =
π̃(1− π̃)
n + 4 + 1

≈ π̃(1− π̃)
n + 4
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In addition, as n gets large, the posterior distribution of π|S is
approximately normal.

The original motivation for this interval was to approximate to Wilson’s
Score confidence interval which was shown to have better properties than
the standard interval.

Find all π0 s.t. ∣∣∣∣∣∣∣
π̂ − π0√
π0(1−π0)

n

∣∣∣∣∣∣∣
≤ z∗α/2

This is the acceptance region for the usual normal based test of

H0 : π = π0 vs HA : π 6= π0

Aside: Note that the AC interval and the standard interval have the
same basic approach. You can think AC interval as an adjustment to the
standard interval to fix the coverage properties of the standard interval
in addition to its Bayesian and Score interval interpretations.
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Clopper-Pearson Interval:

This is an exact confidence interval based on inverting the hypothesis test

H0 : π = π0 vs HA : π 6= π0

using exact binomial probabilities. This interval is conservative (i.e. the
coverage level ≥ 1 − α for every π). However it tends to be overly
conservative in that it can give much wider intervals than needed.

One way of calculating the interval is

(
F−1

(
α
2 , S, n− S + 1

)
, F−1

(
1− α

2 , S + 1, n− S
))

where F−1(q, a, b) is the quantile function of a Beta(a, b) distribution.

This interval has the property of never going outside (0,1).
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This interval is available in R via the functions binom.test() and
binom.exact(). The second function is part of the library epitools.

For the S = 1 and n=10 case, lets look at the three intervals

> library(epitools) # only need to run once per session

> binom.approx(1,10) # standard interval
x n proportion lower upper conf.level

1 1 10 0.1 -0.08593851 0.2859385 0.95

> binom.ac(1,10) # a function I wrote
x n proportion ptilde lower upper conf.level

1 1 10 0.1 0.2142857 -0.0006521887 0.4292236 0.95

> binom.exact(1,10)
x n proportion lower upper conf.level

1 1 10 0.1 0.002528579 0.4450161 0.95
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This exhibits what tends to happen for smaller sample sizes, the standard
interval has problems but the AC interval and the Clopper-Pearson interval
are similar.

For larger n, all three intervals act similarly, with the exact interval tending
to be a bit wider than the other 2.

> binom.approx(63,78)
x n proportion lower upper conf.level

1 63 78 0.8076923 0.7202298 0.8951548 0.95

> binom.ac(63,78)
x n proportion ptilde lower upper conf.level

1 63 78 0.8076923 0.792683 0.7049407 0.8804251 0.95

> binom.exact(63,78)
x n proportion lower upper conf.level

1 63 78 0.8076923 0.7027294 0.8881803 0.95
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Sampling Distribution for the Difference of Two
Proportions

One way of comparing the difference between aspirin and placebo in the
example is to look at π1 − π2. (We will look at two other measures as
well). The usual estimate of this quantity is π̂1 − π̂2. It has the following
properties

• E[π̂1 − π̂2] = π1 − π2

• Var(π̂1 − π̂2) = π1(1−π1)
n1

+ π2(1−π2)
n2

• If n1 and n2 are large, π̂1 − π̂2 is approximately normal distributed with
the above mean and variance

The rules of thumb for ni being large enough depends on whether you
are constructing a confidence interval for π1 − π2 or testing

H0 : π1 = π2 vs HA : π1 6= π2
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A simple rule that works in both cases is if the observed number of
successes and the observed number of failures in each group is at least
5.

In either case, the normal approximation works better the closer the πis
are to 0.5.
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Confidence Interval for π1 − π2

Standard Interval:

The usual 100(1 − α)% (approximate) confidence interval for π1 − π2 is
given by

(π̂1 − π̂2)± z∗α/2

√
π̂1(1− π̂1)

n1
+

π̂2(1− π̂2)
n2

This interval does not work well when n1 or n2 (or both) are small. The rule
of thumb mentioned earlier (all observed numbers of successes and failures
> 5) works well here.

So a 95% CI for π̂1 − π̂2 is given by the calculations

π̂1 − π̂2 =
63
78
− 43

77
= 0.808− 0.558 = 0.249

SE(π̃) =

√
0.808(1− 0.808)

78
+

0.558(1− 0.558)
77

= 0.0721
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CI = 0.249± 1.96× 0.0721

= 0.249± 0.141

= (0.109, 0.391)

So we have fairly good evidence that aspirin is better than placebo in
preventing strokes.

Risk of Urethritis in Seminal Super Shedding (SSS) in HIV-I

A sample of 72 men infected by HIV-I were classified on whether they have
had problems with urethritis. Within each group, the rate SSS was then
examined. The question of interest was whether men with the urethritis
tended to higher rates of the SSE form HIV-I.
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Urethritis SSS No SSS Total

No 6 60 66

Yes 3 3 6

Total 9 63 72

This dataset does not meet the rule of thumb for sample size. However we
can still calculate the interval

> binom.approx2(6,66,3,6) # again a function of mine
prop1 prop2 diff se lower upper conf.level

1 0.09091 0.5 -0.40909 0.20717 -0.8151 -0.003048 0.95

While this doesn’t appear to give impossible values, this interval procedure
has poor coverage properties with sample sizes like this.

So we need another procedure.
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“Add Two Success and Two Failures” Interval:

This is a analogue to the Agresti-Coull procedure for a single proportion.
(I’m not sure who’s idea it was. It was not mentioned in the Agresti and
Coull paper. My source for it is Moore and McCabe (2006), Introduction
to the Practice of Statistics.) However similar motivations should give this
interval.

This idea again is to add observations to each group. Instead in this case,
we’ll add one success and one failure in each group. The confidence interval
is based on the estimates

π̃1 =
S1 + 1
n1 + 2

and π̃2 =
S2 + 1
n2 + 2

The interval has the form

(π̃1 − π̃2)± z∗α/2

√
π̃1(1− π̃1)

n1 + 2
+

π̃2(1− π̃2)
n2 + 2
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Again it uses the standard interval procedure, plugging in modified data.

So a 95% CI for π̂1 − π̂2 by this procedure for the HIV data is given by the
calculations

π̃1 − π̃2 =
6 + 1
66 + 2

− 3 + 1
6 + 2

= 0.103− 0.5 = −0.397

SE(π̃) =

√
0.103(1− 0.103)

66 + 2
+

0.5(1− 0.5)
6 + 2

= 0.1806

CI = −0.397± 1.96× 0.1806

= −0.397± 0.354

= (−0.751,−0.043)
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> binom.approx2(6,66,3,6) # again a function of mine
prop1 prop2 diff se lower upper conf.level

1 0.09091 0.5 -0.40909 0.20717 -0.8151 -0.003048 0.95

> binom.ac2(6,66,3,6)
prop1 prop2 diff se lower upper conf.level

1 0.09091 0.5 -0.39706 0.18058 -0.7510 -0.04313 0.95

So in this example, it appears that there is a difference in SSS rates between
the two groups.

The AC interval will tend to give a narrower interval. Also it will tend
to be centered closer to 0, though it doesn’t have to. Even though it is
a narrower interval, it tends to have better coverage properties than the
standard interval.
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For large samples, the two procedure give similar intervals as can be seen in
the stroke example

> binom.approx2(63,78,43,77)
prop1 prop2 diff se lower upper conf.level

1 0.8077 0.5584 0.2493 0.0721 0.1080 0.3905 0.95

> binom.ac2(63,78,43,77)
prop1 prop2 diff se lower upper conf.level

1 0.8077 0.5584 0.2430 0.0716 0.1027 0.3833 0.95
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Tests on π1 − π2

While tests of the form

H0 : π1 − π2 = c vs HA : π1 − π2 6= c

can be examined by the test statistic

z =
(π̂1 − π̂2)− c

SE(π̂1 − π̂2)

I want to focus on the special case

H0 : π1 − π2 = 0 vs HA : π1 − π2 6= 0

or equivalently
H0 : π1 = π2 vs HA : π1 6= π2

(Note can also consider one-sided hypotheses.)
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The case for a general c usually is not interesting. For example, researchers
usually won’t ask the question of whether a treatment will decrease a
proportion by 0.1. It may not even make sense (i.e. what if π = 0.05).
Instead they usually ask questions like whether a treatment will half the
current proportion.

However the question of whether 2 proportions are the same or different is
of interest.

For example, is the proportion of people having strokes different in the
aspirin and placebo groups.

We want to base of inference on the statistic π̂1 − π̂2. What is the
distribution of this under H0 : π1 = π2, where πc is the common, but
unknown value of π1 and π2.

If we knew πc,

Var(π̂1 − π̂2) =
πc(1− πc)

n1
+

πc(1− πc)
n2

= πc(1− πc)
(

1
n1

+
1
n2

)
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and

z =
π̂1 − π̂2

SD0(π̂1 − π̂2)
is approximately N(0, 1) distributed where

SD0(π̂1 − π̂2) =

√
πc(1− πc)

(
1
n1

+
1
n2

)

While we don’t know πc we can estimate it, assuming H0 is true. In this
case π̂1 and π̂2 are both estimates of this quantity. So some combination
of these should give a better estimate (more data, better estimate).

In addition,
S1 + S2 ∼ Bin(n1 + n2, πc)

For this combined data, we get

π̂c =
S1 + S2

n1 + n2
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This can also be thought of as a combination of π̂1 and π̂2 as

π̂c =
n1

n1 + n2
π̂1 +

n2

n1 + n2
π̂2

(a weighted combination of π̂1 and π̂2 with the sample sizes as the weights).

This gives us an estimated standard error of

SE0(π̂1 − π̂2) =

√
π̂c(1− π̂c)

(
1
n1

+
1
n2

)

and a test statistic of

and

z =
π̂1 − π̂2

SE0(π̂1 − π̂2)

which asymptotically has a N(0, 1) distribution in n1 and n2 are big enough.
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A common rule of thumb is to check whether nsπ̂c and ns(1− π̂c) are both
at least 5, where ns = min(n1, n2). This is equivalent to checking whether
the expected number of successes and failure is at least 5 for both groups
under H0.

The p-values for this test are given by

Alternative Hypothesis p-value

HA : π1 − π2 < 0 P [N(0, 1) ≤ z]
HA : π1 − π2 > 0 P [N(0, 1) ≥ z]
HA : π1 − π2 6= 0 P [|N(0, 1)| ≥ |z|] = 2P [N(0, 1) ≥ |z|]

So for the stroke example

π̂1 − π̂2 = 0.808− 0.558 = 0.249

π̂c =
63 + 43
78 + 77

= 0.684
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SE0(π̂1 − π̂2) =

√
0.684(1− 0.684)

(
1
78

+
1
77

)

= 0.0747

z =
0.249
0.0747

= 3.337

p-value = 2P [N(0, 1) ≥ 3.337] = 0.00084 (2-sided alternative)

So as we have seen before, there is strong evidence in this data set the
aspirin appears to drop the rate of strokes.
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1-sided Versus 2-sided Tests

In most situations, you want to do 2-sided test, not 1-sided tests. In many
cases, there is an alternative you want to see. For example, in the stroke
example, you want to see π1 > π2 (aspirin better than placebo). However
the other possibility is usually also possible (aspirin is actually harmful).
Due to this you want to do the 2-sided test.

In some cases it is actually required. FDA regulations involving tests on
treatment effects of candidate treatment require 2-sided tests. So if you
don’t specify you are doing 2-sided tests, the reviewers immediately double
all your p-values. (Actually if the submission was this badly written, they
probably would reject it.)
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In the example in the text looking at CVD deaths and obesity, they are
looking at the alternative hypothesis HA : π1 − π2 > 0 and they get a
p-valueof 0.37. I feel that in this case, the 2-sided test is more appropriate.
Are there strong apriori reasons saying that obesity must increase the rate
of deaths? I say no and in fact the writeup in the text suggests it could go
the other way.

So in this case, the p-value should be doubled to 0.74. Note that it doesn’t
change the conclusion about statistical significance in this example, but
there are situations where it can.
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