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Sampling Schemes for 2 × 2 Tables

In the previous examples, the data could be put into a 2 × 2 tables.
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However, the mechanisms (i.e. the sampling schemes) used to collect the
data varied. They included

• Experiment (Aspirin trial to prevent strokes)

• Two independent samples (Lipid drugs and risk of Rhabdomyolysis)

• A single sample cross classified by two variables (Infant deaths in New
York)

As we saw in comparing prospective to retrospective studies, the parameters
that can be estimated and the type of comparisons that can be made may
depend on the sampling mechanism.

There are 6 common sampling schemes that are seen that lead to a 2 × 2
table structure.
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• Poisson Sampling: A sample from a single population is sampled and
each member falls into one of the four cells of the 2 × 2 table.

An example is the infant deaths in New York. Each child born was
classified by birth weight (≤ 2500g vs > 2500g) and mortality status at
one year.

In this scheme none of the marginal totals (or grand total) are known.
In the infant death example, the total number of births in New York in
1974 is a random variable.

• Multinomial Sampling: This scheme is related the Poisson scheme,
except the grand total is a fixed quantity. As in the Poisson scheme,
each subject sampled falls into one of the four cells of the table. This
could be done, for the infant death example, by taking say, a random
sample of 5000 from the total of 37840 births that year.
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• Prospective Product Binomial Sampling: This scheme matches with
the motivation of the last chapter. Two binomial samples, one or each
level of the explanatory variable, are taken. For each group, the sample
size (row total) is fixed. Then each subject/object is classified by the
levels of the response variable.

• Retrospective Product Binomial Sampling: This is equivalent to
the prospective product binomial sampling case where the sampling
subpopulations are defined by the levels of the response factor (fixing the
column totals) and the subjects are then classified by the explanatory
variable.

• Randomized Binomial Experiment: In this case, the subjects are
randomly allocated to the two levels of the explanatory variable, thus
fixing them (row totals). Then each subject is classified by the response
variable. This is effectively the same scheme as prospective product
binomial sampling.
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• Hypergeometric Probability Distribution: In this case both the row
and column totals are fixed. Observations are classified by both variables,
subject to both row and column constraints.

The classic example Fisher’s Tea Tasting Experiment (1935, Experiement
Design, page 11) a lady is asked to sample 8 cups of tea, 4 where the
milk is poured first, and 4 with tea poured first (fixing the row totals).
The lady is informed that there will be 4 of each (fixing the row totals).
Hypothetical data looks like

Guess

Truth Milk First Tea First Total

Milk First 3 1 4

Tea First 1 3 4

Total 4 4 8
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Sampling Scheme Marginal Totals Fixed

Poisson None

Multinomial Grand Total

Product Binomial

Prospective Row (explanatory) Totals

Retrospective Column (explanatory) Totals

Randomized Experiment Row (explanatory) Totals

Hypergeometric Row and Column Totals
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Probability Models Underlying Sampling Schemes

Underlying the analysis of each of these sampling schemes are probability
models. The following are the usual assumptions made in each case (at
least one way of describing them)

• Prospective Product Binomial Sampling:

1. Explanatory level 1: n11 ∼ Bin(R1, π1)
2. Explanatory level 2: n21 ∼ Bin(R2, π2)

and n11 and n21 are independent.

Level 1 Level 2 Total

Level 1 π1 1− π1 1
Level 2 π2 1− π2 1

(Note the randomized experiment case follows the same model.)
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• Retrospective Product Binomial Sampling:

1. Response level 1: n11 ∼ Bin(C1, ν1)
2. Response level 2: n12 ∼ Bin(C2, ν2)

and n11 and n12 are independent.

Level 1 Level 2

Level 1 ν1 ν2

Level 2 1− ν2 1− ν2

Totals 1 1

This is effectively the same scheme. Instead we are conditioning on
columns instead of rows.

(Note in last class ν1 and ν2 were called p1 and p2. I want to use p for
something else today.)
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• Multinomial Sampling:

(n11, n12, n21, n22) ∼ Multi(T, (p11, p12, p21, p22))

where p11 + p12 + p21 + p22 = 1

Level 1 Level 2 Total

Level 1 p11 p12 p1+

Level 2 p21 p22 p2+

Total p+1 p+2 1

(the + in the subscript indicates to add across that index).
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With this type of sampling, we can learn about similar quantities as in
the two product binomial sampling cases. This is due to the fact, that if
(n11, n12, n21, n22) has the above Multinomial distribution, then

R1 ∼ Bin(T, ρ)

C1 ∼ Bin(T, γ)

ni1|Ri ∼ Bin(Ri, πi) Row i

n1j|Cj ∼ Bin(Cj, νj) Column j

where
ρ = p+1 γ = p1+

πi =
pi1

pi1 + pi2
=

pi1

pi+

and
νj =

p1j

p1j + p2j
=

p1j

p1+
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• Poisson Sampling:

n11 ∼ P (λ11)

n12 ∼ P (λ12)

n21 ∼ P (λ21)

n22 ∼ P (λ22)

where λij is the expected number of observations falling in cell (i, j).

Level 1 Level 2 Total

Level 1 λ11 λ12 λ1+

Level 2 λ21 λ22 λ2+

Total λ+1 λ+2 λ++
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Assuming that each of these are independent of the others, the following
distributions can be shown

Ri ∼ P (λi+)

Cj ∼ P (λ+j)

T ∼ P (λ++)

where

λi+ = λi1 + λi2

λ+j = λ1j + λ2j

λ++ = λ1+ + λ2+ = λ+1 + λ+2
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Of more interest are the proportions falling into each cell in the overall
table,

pij =
λij

λ++

the row and column marginal proportions

γi =
λi+

λ++

= pi1 + pi2 = pi+

ρj =
λ+j

λ++

= p1j + p2j = p+j
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or the conditional proportions following into each row

pj|i = P [Column j|Row i] =
λij

λi+

(given that the observation is from row i, what fraction fall in column j)

or column

pi|j = P [Row i|Column j] =
λij

λ+j

(given that the observation is from column j, what fraction fall in row i)

It can be shown that

πi = p1|i νj = p1|j

This is based on the fact that with the given Poisson model for the four
cells

n11|n11 + n12 = R1 ∼ Bin(R1, π1)
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where

π1 =
λ11

λ11 + λ12

and

n11|n11 + n21 = C1 ∼ Bin(C1, ν1)

where

ν1 =
λ11

λ11 + λ21

(similarly for the other conditional probabilities.)

This can also be shown by the fact that again with the given Poisson
model

(n11, n12, n21, n22)|
∑

nij = T ∼ Multi(T, (p11, p12, p21, p22))

where the pij are as defined as before.
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Example: Infant mortality in New York City in 1974

Birthweight Dead Alive Total

≤ 2500 grams 530 4340 4870

> 2500 grams 333 32637 32970

Total 863 36977 37840

This is an example of Poisson sampling as all the births in New York
were recorded and classified into the 2 × 2 table.

So the joint and marginal probabilities are estimated to be

Birthweight Dead Alive Total

≤ 2500 grams 0.0140 0.1147 0.1287

> 2500 grams 0.0088 0.8625 0.8713

Total 0.0228 0.9778 1

530
37840

= 0.0140
32970
37840

= 0.8713 etc

Probability Models Underlying Sampling Schemes 16



The conditional probabilities are estimated to be

P [Status|Weight]:

Birthweight Dead Alive Total

≤ 2500 grams 0.1088 0.8912 1

> 2500 grams 0.0101 0.9899 1

P [Weight|Status]:

Birthweight Dead Alive

≤ 2500 grams 0.6141 0.1174

> 2500 grams 0.3859 0.8826

Total 1 1

530
4870

= 0.1088
32970
36977

= 0.8826 etc
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• Hypergeometric Probability Distribution:

In this case, you can consider the situation has sampling from a population
of size T , where there are C1 successes and C2 failures and you will
sample R1 items from this population, observing the number of successes
n11.

Under the usual null hypothesis assumptions (to be discussed later)

n11 ∼ Hyper(R1, C1, T )

Otherwise, n11 has what as known as a non-central hypergeometric
distribution

Probability Models Underlying Sampling Schemes 18



Estimable Parameters and Testable Hypotheses

Sampling Scheme π1 π2 π1 − π2 ω1 ω2 ω1/ω2 ρ γ

Poisson " " " " " " " "
Multinomial " " " " " " " "
Product Binomial

Prospective " " " " " " % *

Retrospective % % % % % % * %
Randomize Experiment " " " " " "

* only possible if ω1 = ω2

Lets consider the case of estimating γ in the prospective sampling case
when ω1 = ω2. In this case, the two binomial distributions must have the
form
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Level 1 Level 2 Total

Level 1 π 1− π 1
Level 2 π 1− π 1

for some value π.

In this case P [Col 1|Row 1] = P [Col 1|Row 2], so rows and columns will be
independent yielding a joint probability table of

Level 1 Level 2 Total

Level 1 rπ r(1− π) r

Level 2 (1− r)π (1− r)1− π 1− r

Total π 1− π 1

where r depends on the given and fixed sample sizes for each row.

This implies that
P [Col 1] = π = γ

for any r.
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Then γ can be estimated since

C1 = n11 + n21 ∼ Bin(T, γ)

Actually the assumption that ω1 = ω2 can be extended to the case that
ω2 = φω1 where φ is the known (and fixed) odds ratio. Usually φ is not
known so the case won’t be discussed here.

So far, our testing examples we’ve been looking at null hypotheses of the
equivalent forms

H0 : π1 = π2 and H0 : ω1 = ω2

These are often called hypotheses of homogeneity as they are focused on
whether the distribution of the binary response is homogeneous – the same
– across populations.
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Now consider the situations of Poisson and Multinomial sampling. The
above hypotheses are equivalent to the statement

H0 : P [Col 1|Row 1] = P [Col 1|Row 2]

i.e. rows and columns are independent. So under these sampling schemes,
tests can either be thought of as tests of independence or tests of
homogeneity.

Another way of thinking of the null hypothesis of independence is

H0 : pij = ρiγj

In the product binomial and randomized experiments cases, considering
these as tests of homogeneity only make sense as one of the two factors is
not random.

For example in the aspirin trial, the number of people of each treatment is
fixed. The only randomness is in whether a subject has a stroke or not.
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Pearson Chi-Squared Test for 2 × 2 tables

Another way of thinking of testing for independence or homogeneity, is to
compare the observed counts in the table with what would be expected
under the null hypothesis.

Lets suppose that the sampling mechanism is prospective product binomial
sampling. Then as we have seen before, the estimate of the common
success probability is

π̂c =
S1 + S2

n1 + n2

Fitting this into the notation for the 2 × 2 table, this is equivalent to

π̂c =
n11 + n21

R1 + R2
=

C1

T
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This implies we should estimate the number of success in the two rows by

Ei1 = Ri × π̂c = Ri
C1

T

Similarly all cells in the table the expected number of counts is

Level 1 Level 2 Total

Level 1 R1C1
T

R1C2
T R1

Level 2 R2C1
T

R2C2
T R2

Total C1 C2 T

Notice that this table has the same row and column sums as the table of
the observed counts.
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Now lets think about what to do for Multinomial sampling case under
independence. In this case pij = ρiγj, so it seems reasonable to estimate
the expected counts by

Eij = T ρ̂iγ̂j

Under independence, the marginal probabilities can be estimated by

ρ̂i =
Ri

T
γ̂j =

Cj

T

Using this gives

Eij = T
Ri

T

Cj

T
=

RiCj

T

the same expected counts as before.

In fact, for all of the discussed sampling schemes, these are reasonable
estimates for the expected counts. (They are all maximum likelihood
estimates).
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The form of Pearson’s Chi-Square test is

X2 =
∑

all cells

(Oij − Eij)2

Eij

This is compared to a χ2
1 distribution. For this test, always calculate a

2-sided p-value. This statistic does not take account of the direction of the
deviation from the null hypothesis.

Why 1 degree of freedom? As noted earlier the table of expected counts
must have the row and column sums as the table of observed counts. So
once you’ve specified the marginal totals and one cell count, all other cells
are then determined. An equivalent statement is that once Oij − Eij is
specified for one cell, is it known for the whole 2×2 table.

So you can think about this in a similar fashion as the degrees of freedom
for estimating σ2 when calculating a t-test statistic.
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Lets look to see if birth weight and 1 year mortality are independent.

Observed and expected counts:

Observed Counts Expected Counts

Dead Alive Total Dead Alive Total

≤ 2500g 530 4340 4870 111.0679 4758.932 4870

> 2500g 333 32637 37840 751.9321 32218.068 32970

Total 863 36977 37840 863 36977 37840

O − E:

Dead Alive

≤ 2500g 418.9321 -418.9321

> 2500g -418.9321 418.9321
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(O − E)2/E:

Dead Alive

≤ 2500g 1580.2 36.879

> 2500g 233.4 5.447

X2 = 1855.882 p-value < 2.2e− 16

A similar answer to last time, there is an association between birth weight
and 1 year survival.
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This test is implemented in R with the chisq.test() function. To
implement the example with this function

> nydeath <- matrix(c(530, 4340, 333, 32637),ncol=2, byrow=T)

> chisq.test(nydeath, correct=F)

Pearson’s Chi-squared test

data: nydeath X-squared = 1855.882, df = 1, p-value < 2.2e-16
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So we now have three tests for investigating tests on proportions

• z-test based on π̂1 − π̂2

• z-test based on log odds ratio

• Pearson Chi-square test

As mentioned before the two z-tests will give similar, but not exactly the
same answers. However it can be shown that for the test based on π̂1 − π̂2

X2 = z2

Since the square of a N(0, 1) is distributed χ2
1, the p-value must be the

same for both tests (assuming 2-sided z-test).
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Since these two tests are the same, we should use the same sample
size considerations to determine whether the asymptotic χ2

1 distribution
approximation is reasonable. The usual assumption can be thought of in
this setting as

minEij ≥ 5

If this condition is not met, there is an approximation due to Yates that
may be used. The test statistics is modified to

X2
y =

∑

all cells

(|Oij − Eij| − 0.5)2

Eij

This is the default case with the function chisq.test (which is way the
earlier example had the correct=F option set).
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For large examples, the correction won’t make much of a difference as can
be seen in

> chisq.test(nydeath, correct=F)

Pearson’s Chi-squared test

data: nydeath X-squared = 1855.882, df = 1, p-value < 2.2e-16

> chisq.test(nydeath, correct=T)

Pearson’s Chi-squared test with Yates’ continuity correction

data: nydeath X-squared = 1851.454, df = 1, p-value < 2.2e-16

Though for smaller examples, it may. Consider the urethritis in HIV-I
example
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> chisq.test(SSS, correct=F)

Pearson’s Chi-squared test

data: SSS X-squared = 8.4156, df = 1, p-value = 0.00372

Warning message: Chi-squared approximation may be incorrect in:
chisq.test(SSS, correct = F)

> chisq.test(SSS, correct=T)

Pearson’s Chi-squared test with Yates’ continuity correction

data: SSS X-squared = 5.0909, df = 1, p-value = 0.02405

Warning message: Chi-squared approximation may be incorrect in:
chisq.test(SSS, correct = T)
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To see what happens with a situation of the boundary of the rule of thumb,
consider the dataset analyzed by Fisher (1950)

Twin Type Convicted Not convicted

Dizygotic 2 15

Monozygotic 10 3

The expected counts are

Twin Type Convicted Not convicted

Dizygotic 6.8 10.2

Monozygotic 5.2 7.8
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> chisq.test(Convictions, correct=F)

Pearson’s Chi-squared test

data: Convictions X-squared = 13.0317, df = 1, p-value = 0.0003063

> chisq.test(Convictions, correct=T)

Pearson’s Chi-squared test with Yates’ continuity correction

data: Convictions X-squared = 10.4581, df = 1, p-value = 0.001221

while the p-value changes by a factor of about 4, the effective answer is the
same.

Pearson Chi-Squared Test for 2 × 2 tables 35



There is also a z-test version of Yates correction, where

zy =
|π̂1 − π̂2| − 1

2T√
π̂c(1−π̂c)

T

The general consensus today is not to use Yates correction, as it is too
conservative and leads to tests with lower power.

If you are worried about the asymptotics going into calculation of the
p-value, you are better using one of the procedures to be discussed next
class.

Extension of Chi-square tests:

While the Chi-square test was displayed for 2 × 2 tables, it can easily be
extended to r × c tables. This will be discussed later when we get to the
log-linear model.
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