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Logistic Regression Model

Let Yi be the response for the ith observation where

Yi =

{
1 Success

0 Failure

Then
Yi ∼ Bin(1, π(xi))

where xi is the level of the predictor of observation i.

An equivalent way of thinking of this, is to model

µ(Yi|xi) = π(xi)

One possible model would be

π(xi) = β0 + β1xi
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As we saw last class, this model will give invalid values for π for extreme
xs. In fact there is a problem if

x <
−β0

β1
or x >

1− β0

β1

We would still like to keep a linear type predictor. One way to do this is to
apply a link function g(·) to transform the mean to a linear function, i.e.

g(π) = β0 + β1x

As mentioned last class, we want the function g(·) to transform the interval
[0,1] to (−∞,∞). While their are many possible choices for this, there is
one that matches up with what we have seen before, the logit transformation

logit(π) = log
π

1− π
= log ω = η
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So instead of looking at things on the probability scale, lets look at things
on the log odds (η) scale.

Transforming back gives

π

1− π
= ω = eη = eβ0+β1x

and

π =
ω

1 + ω
=

eη

1 + eη
=

eβ0+β1x

1 + eβ0+β1x

Note the standard Bernoulli distribution results hold here

µ(Y |X) = π =
eβ0+β1x

1 + eβ0+β1x
and Var(Y |X) = π(1−π) =

eβ0+β1x

(1 + eβ0+β1x)2
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While the above just assumes a single predictor, it is trivial to extend this
to multiple predictors, just set

logit(π) = β0 + β1x1 + . . . + βpxp = Xβ

giving
π

1− π
= ω = eη = eβ0+β1x1+...+βpxp = eXβ

and

π =
ω

1 + ω
=

eη

1 + eη
=

eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp
=

eXβ

1 + eXβ
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Example: Low Birth Weight in Infants

Hosmer and Lemeshow (1989) look at a data set on 189 births at Baystate
Medical Center, Springfield, Mass during 1986, with the main interest being
in low birth weight.

low: birth weight less than 2.5 kg (0/1)
age: age of mother in years
lwt: weight of mother (lbs) at last menstrual period
race: white/black/other
smoke: smoking status during pregnancy
ptl: number of previous premature labours
ht: history of hypertension (0/1)
ui: has uterine irritability (0/1)
ftv: number of physician visits in first trimester
bwt: actual birth weight (grams)

We will focus on maternal age for now.
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This data set is available in R in the data frame birthwt, though you may
need to give the command library(MASS) to access it.
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Lets fit the model

logit(π(age)) = β0 + β1age

in R with the function glm
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> birthwt.glm <- glm(low ~ age, data=birthwt, family=binomial)
> summary(birthwt.glm)

Call: glm(formula = low ~ age, family = binomial, data = birthwt)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.0402 -0.9018 -0.7754 1.4119 1.7800

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.38458 0.73212 0.525 0.599
age -0.05115 0.03151 -1.623 0.105

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 231.91 on 187 degrees of freedom
AIC: 235.91
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The fitted curves are

η̂(age) = 0.385− 0.051age

ω̂(age) = e0.385−0.051age

π̂(age) =
e0.385−0.051age

1 + e0.385−0.051age
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π̂(age)
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So in this case, it appears that age increases, the probability/odds of having
a low birth weight baby decreases.

What is the effect of changing x on η, ω, and π? Lets see what happens
as x goes to x + ∆x in the single predictor case.

η(x + ∆x) = β0 + β1(x + ∆x) = β0 + β1x + β1∆x = η(x) + β1∆x

So the log odds work the same way as linear regression. Changing x by one
leads to a change in log odds of β1.

ω(x+∆x) = eβ0+β1(x+∆x) = eβ0+β1x+β1∆x = ω(x)×eβ1∆x = ω(x)×(eβ1)∆x

So for this model, the changing x has a multiplicative effect on the odds.
Increasing x by 1 leads to multiplying the odds by eβ1. Increasing x by
another 1 leads to another multiplication of eβ1.
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Another way of thinking of this is through the odds ratio

ω(x + ∆x)
ω(x)

= eβ1∆x = (eβ1)∆x

Note that the difference in odds depends on x (through the odds) as

ω(x + ∆x)− ω(x) = ω(x)(eβ1∆x − 1)

So the bigger ω(x), the bigger the absolute difference.

For π there is not a nice relationship as π(x) has an S shape.

π(x + ∆x) =
eβ0+β1(x+∆x)

1 + eβ0+β1(x+∆x)
= π(x) + something ugly

As can be seen in the following figure, the change π(x) depends on π(x)
and not in a nice way. However the biggest changes occur when π(x) ≈ 0.5
and the size of the change decreases as π(x) approaches 0 and 1.
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These formulas also imply that the sign of β1 indicates whether ω(x) and
π(x) increases (β1 > 0) or decreases (β1 < 0) as x increases.

So in the example, since β̂1 = -0.051, older mothers should be less likely to
have low birth weight babies (ignoring the effects of other predictors).

More precisely, each additional year of age lowers the odds of a low birth
weight birth by a factor of e−0.051 = 0.95 per year.

Actually, there isn’t enough evidence to declare age to be statistically
significant, but the data does suggest the previous statements.

In the case of multiple predictors, you need to be a bit more careful. If
there are no interaction terms in the model, e.g. nothing like

logit(π) = β0 + β1x1 + β2x2 + β12x1x2

then the previous ideas go through if you fix all but one xj and only allow
one to vary.
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For example for the model

logitπ(x1, x2) = β0 + β1x1 + β2x2

The log odds satisfy

η(x1 + ∆x, x2) = β0 + β1(x + ∆x) + β2x2

= β0 + β1x + β1∆x + β2x2

= η(x1, x2) + β1∆x

imply that the odds satisfy

ω(x1 + ∆x, x2) = eβ0+β1(x+∆x)+β2x2

= eβ0+β1x+β1∆x+β2x2

= ω(x1, x2)× eβ1∆x

= ω(x1, x2)× (eβ1)∆x
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However for the interaction model

logit(π) = β0 + β1x1 + β2x2 + β12x1x2

the log odds satisfy

η(x1 + ∆x, x2) = β0 + β1(x + ∆x) + β2x2 + β12(x1 + ∆x)x2

= β0 + β1x + β2x2 + β12x1x2 + ∆x(β1 + β12x2)

= η(x1, x2) + ∆x(β1 + β12x2)

implying the effect of changing x1 depends on the level of x2 as

ω(x1 + ∆x, x2) = eβ0+β1(x+∆x)+β2x2+β12(x1+∆x)x2

= eβ0+β1x+β2x2+β12x1x2+∆x(β1+β12x2)

= ω(x1, x2)× e∆x(β1+β12x2)
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Fitting the Logistic Regression Model

One approach you might think of fitting the model would be do to least
squares on the data (xi, logit(Yi)). Unfortunately this approach has some
problems.

• If X ∼ Bin(n, π) and p̂ = X
n , then

Var(logit(p̂)) ≈ 1
nπ(1− π)

so we don’t have constant variance.

• If Y ∼ Bin(1, π), then logit(Y ) equals −∞ or ∞.

While there are ways around this (weighted least squares & fudging the
Yis), a better approach is maximum likelihood.
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Maximum Likelihood Estimation

Lets assume that that Y1, Y2, . . . , Yn are an independent random sample
from a population with a distribution described by the density (or pmf if
discrete) f(Yi|θ). The parameter θ might be a vector θ = (θ1, θ2, . . . , θp).

Then the likelihood function is

L(θ) =
n∏

i=1

f(Yi|θ)

The maximum likelihood estimate (MLE) of θ is

θ̂ = arg sup L(θ)

i.e. the value of θ that maximizes the likelihood function. One way of
thinking of the MLE is that its the value of the parameter that is most
consistent with the data.

Maximum Likelihood Estimation 16



So for logistic regression, the likelihood function has the form

L(β) =
n∏

i=1

πyi
i (1− πi)1−yi

=
n∏

i=1

(
πi

1− πi

)yi

(1− πi)

=
n∏

i=1

ωyi
i (1− πi)

=
n∏

i=1

(
eβ0+β1xi

)yi 1
1 + eβ0+β1xi

where logit(πi) = log ωi = β0 + β1xi.
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One approach to maximizing the likelihood is via calculus by solving the
equations

∂L(θ)
∂θ1

= 0,
∂L(θ)
∂θ2

= 0, . . . ,
∂L(θ)
∂θp

= 0

with respect to the parameter θ.

Note that when determining MLEs, it is usually easier to work with the log
likelihood function

l(θ) = log L(θ) =
n∑

i=1

log f(xi|θ)

It has the same optimum since log is an increasing function and it is easier to
work with since derivatives of sums are usually much nicer than derivatives
of products.
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Thus we can solve the score equations

∂l(θ)
∂θ1

=
n∑

i=1

∂ log f(xi|θ)
∂θ1

= 0

∂l(θ)
∂θ2

=
n∑

i=1

∂ log f(xi|θ)
∂θ2

= 0

. . .

∂l(θ)
∂θp

=
n∑

i=1

∂ log f(xi|θ)
∂θp

= 0

for θ instead.
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For logistic regression, the log likelihood function is

l(β) =
n∑

i=1

(yi log πi + (1− yi) log(1− πi))

=
n∑

i=1

(yi log ωi + log(1− πi))

=
n∑

i=1

(
yi(β0 + β1xi)− log(1 + eβ0+β1xi)

)
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Normally there are not closed form solutions to these equations as can be
seen from the score equations

∂l(β)
∂β0

=
n∑

i=1

(
yi − eβ0+β1xi

1 + eβ0+β1xi

)
= 0

∂l(β)
∂β1

=
n∑

i=1

(
xiyi − xi

eβ0+β1xi

1 + eβ0+β1xi

)
= 0

These equations will need to be solved by numerical methods, such as
Newton-Raphson or iteratively reweighted least squares.

However there are some special cases which we will discuss later where there
are closed formed solutions (β̂ is a nice function of (xi, yi))
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Key Properties of MLEs

1. For large n, MLEs are nearly unbiased (they are consistent)

2. Var(θ̂) can be estimated.

The information matrix I(θ) is an p× p matrix with entries

Iij = − ∂2l(θ)
∂θi∂θj

Then the inverse of the observed information matrix satisfies

Var(θ̂) ≈ I−1(θ̂)

3. Among approximately unbiased estimators, the MLE has a variance
smaller than any other estimator.
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4. For large n, the sampling distribution of an MLE is approximately normal.

This implies we can get confidence intervals for θi easily.

5. If θ̂ is the MLE of θ, then g(θ̂) is the MLE of g(θ), for any “nice” function
g(·). (Transformations of MLEs are MLEs - Invariance property.)

An example of where this is useful is the estimation of success probabilities
in logistic regression. So

π̂(x) =
eβ̂0+β̂1x

1 + eβ̂0+β̂1x

is the MLE of

π(x) =
eβ0+β1x

1 + eβ0+β1x

So the fitted curve on the earlier plot is the MLE of the probabilities of
a low birth weight for ages 14 to 45.
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Least Squares Versus Maximum Likelihood in Normal
Based Regression

One question some of you may be asking is, if maximum likelihood is so
nice, why was least squares used earlier in the book for regression.

If Yi|Xi
ind∼ N(Xiβ, σ2), i = 1, . . . , n, then the least squares and the

maximum likelihood estimates of β are exactly the same. The log likelihood
function in this case can be written as

l(β, σ2) = −n

2
log 2π − n

2
log σ2 − 1

2σ2

n∑

i=1

(yi − β0 − β1xi1 − . . .− βpxip)2

So maximizing this with respect to β is the same as minimizing the least
square criteria.
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The one place where there is a slight difference is in estimating σ2. The
MLE is

σ̃2 =
SSE

n− p
=

n− p− 1
n− p

σ̂2

where σ̂2 is the usual unbiased method of moments estimator.
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Inference on Individual βs

As mentioned before β̂j is approximately normally distributed with mean βj

and a variance we can estimate. So we can base our inference on the result

z =
β̂j − βj

SE(β̂j)
approx.∼ N(0, 1)

Thus an approximate confidence interval for βj is

β̂j ± z∗α/2SE(β̂j)

where z∗α/2 is the usual normal critical value.

While R doesn’t give you these CIs directly, it does give you the information
needed to calculate them.
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> birthwt.glm <- glm(low ~ age, data=birthwt, family=binomial)
> summary(birthwt.glm)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.0402 -0.9018 -0.7754 1.4119 1.7800

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.38458 0.73212 0.525 0.599
age -0.05115 0.03151 -1.623 0.105

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 231.91 on 187 degrees of freedom
AIC: 235.91

Inference on Individual βs 27



In addition you can get the β̂s and standard errors into vectors, and create
confidence intervals by the following code

> betahat <- coef(birthwt.glm)
> betahat
(Intercept) age
0.38458192 -0.05115294
> se.betahat <- sqrt(diag(vcov(birthwt.glm)))
> se.betahat
(Intercept) age
0.73212479 0.03151376

> me.betahat <- qnorm(0.975) * se.betahat
> ci.betahat <- cbind(Lower=betahat - me.betahat,

Upper=betahat + me.betahat)
> ci.betahat # 95% approximate CIs

Lower Upper
(Intercept) -1.0503563 1.81952014
age -0.1129188 0.01061290
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In addition, testing the hypothesis

H0 : βj = 0 vs HA : βj 6= 0

is usually done by Wald’s test

z =
β̂j

SE(β̂j)

which is compared to the N(0, 1) distribution.

This is given in the standard R output with the summary command
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> birthwt.glm <- glm(low ~ age, data=birthwt, family=binomial)
> summary(birthwt.glm)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.38458 0.73212 0.525 0.599
age -0.05115 0.03151 -1.623 0.105

So in this case age does not appear to statistically significant. However
remember there are a number of potential confounders ignored in this
analysis so you may not want to read too much into this.

As in regular regression, inference on the intercept usually is not interesting.
In this case β0 gives information about mothers with age = 0, a situation
that can’t happen.
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