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Model Checking

“All models are wrong but some models are useful”

– George E. P. Box

So far we have looked at a number of models and examined them with
example data sets. Do the models used accurately describe the data used?

In standard analyses, we will often check model assumptions. For example,
in standard regression we will check for

• Correct form of the regression function (e.g. linear vs quadratic)

• Constant variance of the residuals

• Independence of of the residuals

• Normality of the residuals
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Basic question: How sensitive are our posterior inferences to our modelling
assumptions?

Rat Example: Will the following models give significantly different answers
about tumor rates in each group

1. Original model

• Data model: yi = number of tumors in group i

yi|θi
ind∼ Bin(ni, θi) i = 1, . . . , 71

• Process model: θi = tumor rate in group i

θi|α, β
ind∼ Beta(α, β)

• Parameter model:

p(α, β) ∝ 1
(α + β)5/2
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2. Alternative model 1

• Data model: yi = number of tumors in group i

yi|θi
ind∼ Bin(ni, θi) i = 1, . . . , 71

• Process model: θi = tumor rate in group i

logit(θi)|µ, σ2 ind∼ N(µ, σ2)

• Parameter model:

p(µ, σ2) ∝ 1
σ2
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3. Alternative model 2

• Data model: yi = number of tumors in group i

yi|αi, βi
ind∼ Beta− bin(ni, αi, βi) i = 1, . . . , 71

• Process model: (αi, βi) = tumor rate parameters in group i

αi, βi|γα, δα, γβ, δβ
ind∼ Gamma(αi|γα, δα)Gamma(βi|γβ, δβ)

The tumor rate for group i is

E

[
yi

ni
|αi, βi

]
=

αi

αi + βi

• Parameter model:

p(γα, δα, γβ, δβ) ∝ 1
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Note that we will not be trying to answer the question of whether our
model is correct or not. Its not (see Box). We are interested in whether the
inaccuracies matter.

Examples you may have seen in the past where deviations from assumptions
don’t hurt much (at least in big samples):

• t-test of H0 : µ = µ0 vs HA : µ 6= µ0

Normality often isn’t important, though large skewness can hurt.

• Linear Regression: Y = Xβ + ε

– β̂ = (XTX)−1XTY is unbiased if E[ε] = 0
– β̂ is minimum variance unbiased estimator if E[ε] = 0 and constant

variance. (Gauss-Markov theorem)

Neither of these results require normality of ε.

Model Checking 5



There are cases where assumptions can matter. For example consider the
F -test for examining H0 : σ2

1 = σ2
2 vs HA : σ2

1 6= σ2
2. The results of this

test can be highly dependent on the iid normal assumptions for each group.

One approach to build a super-model that contains all of our models of
interest as special cases. This approach usually isn’t taken as it is usually
difficult to build this super-model and computation is usually infeasible,
assuming you can build the model.

Instead we will base these checks on the posterior predictive distribution.
Does our data look like our fitted model says it should.

This can either be done by

• External validation: future data is compared with the posterior predictive
distribution.

• Internal validation: observed data is compared with the posterior
predictive distribution.
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Posterior Predictive Checking

Idea: If the model fits, replicated data generated under the model should
look similar to the observed data.

If we see some discrepancy, is it due to model misspecification or due to
chance.

Approach: Generate L datasets, yrep
1 , . . . , yrep

L from the posterior predictive
distribution p(yrep|y). yrep corresponds to replicated data. So if there are
any covariates that are conditioned on in the original data.

For example, in the rat tumor example, we need to use the same group
sample sizes as in the original data set.

ỹ represents any future outcome whereas yrep indicates a replication exactly
like the observed y. ỹ does not need to have the same covariate structure
as the original data.
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The approach has a similar feel to hypothesis testing, where a test statistic
T (y, θ) needs to be defined to measure the discrepancy between the data
and the predictive simulations.

Note that the test statistic can depend on the data y and the parameters
and hyperparameters θ, which is different from standard hypothesis testing
where the test statistic only depends on the data, but not the parameters.
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Tail-area probabilities

The lack of fit of the data as compared to the posterior predictive distribution
can be compared by a tail-area probability (e.g. p-value) of the test statistic
T (y, θ). To calculate this probability we will use the replicates sampled
from p(yrep|y).

• Classical p-value

pC = P [T (yrep) ≥ T (y)|θ]

where the probability is calculated over the distribution of yrep given a
fixed θ. In the classical testing setting θ would correspond to the null
hypothesis value. It could also be a point estimate (say the MLE).
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• Posterior predictive p-values

To evaluate the fit of a Bayesian model, we need to consider what
possible data sets are plausible under the model. When doing this we
need to consider not only the observations y, but also the parameter
values θ. Thus the p-value of interest is

pB = P [T (yrep, θ) ≥ T (y, θ)|y]

=
∫ ∫

I(T (yrep, θ) ≥ T (y, θ))p(yrep|θ)p(θ|y)dyrepdθ

Usually we can’t calculate the Bayesian p-value exactly, but can do it
by simulation. Suppose that we have L simulations of θ(θ1, . . . , θL)
from the posterior distribution p(θ|y). Then for each of these θ samples,
generate one sample yrepl from p(yrep|θl).
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We want to compare each of the T (yrepl, θl) with T (y, θl)

Then

p̂B =
1
L

L∑

l=1

I(T (yrepl, θl) ≥ T (y, θl))

(i.e. the proportion of samples where T (yrepl, θl) ≥ T (y, θl)) is an
estimate of pB.

Note that the test statistic T (y, θ) needs to be chosen to investigate
deviations of interest. This is similar to choosing a powerful test statistic
when conducting a hypothesis test

For example, in the analysis of Newcomb’s speed of light experiment
discussed in the text, a worry was the effect of outliers. Thus T (y, θ) needs
to be chosen to focus on this issue.
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In the book T (y, θ) = min yi was used (they were worried about low
outliers). Another possibility would be T (y, θ) = max |yi − µ| (e.g. the
biggest residual in magnitude). This would be appropriate if the worry was
either big positive or big negative residuals. This might occur if

yi|µ, σ2 ∼ tν(µ, σ2)

instead of

yi|µ, σ2 ∼ N(µ, σ2)

as used in the analysis.
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While the approach is a bit more focused on test statistics, this has a similar
feel to residual analysis in regression.

• Is there any pattern in the residual plot (ei vs ŷi)

• Plotting ei vs ei−1 or the Durbin-Watson test to examine whether
residuals are correlated over time

• Normal scores plot or Anderson-Darling test for normality of residuals

For example, if we see some curvature (but constant variance) in the residual
plot, it suggests we might be missing a x2 term in the model.

If there is some curvature and non-constant variance in the residual plot,
maybe we need to transform y.
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Examples:

For the two random effects model examples (detergent filling and sodium
level in beer), two concerns might be

1. Conditional normality of the observations (e.g. yij ∼ N(θj, σ
2))

2. Constant variance of observations within each group

Note that these are probably of limited concern in both of these examples,
as the total sample size is fairly large and there are equal numbers of
observations in each group for both data sets.
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Possible test statistics to evaluate these are

1. Normality: Let eij = yij− θj and e(1) ≤ e(2) ≤ . . . ≤ e(n) be the ordered
residuals. Let

T (y, θ) = Corr
(

e(i), Φ−1

(
i

n + 1

))

(e.g. Correlation of points in a normal scores plot). If the data is
conditionally normal, this correlation should be close to one. Otherwise
the normal scores plot will have some non-linearity, which will pull this
correlation down from one.

(This test statistic has the feel of the Shapiro-Wilks normality test.)
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2. Equal variance: Let s2
i be the sample variance of the observation in

group i. If the constant variance assumption is reasonable

T (y, θ) =
max s2

i

min s2
i

should not be much bigger than one.
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Detergent example:
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Normality test: p̂B = 0.4886

Equal variance test: p̂B = 0.9866
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Beer example:
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Normality test: p̂B = 0.5270

Equal variance test: p̂B = 0.3520
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