
Computation V

Statistics 220

Spring 2005

Copyright c©2005 by Mark E. Irwin

WinBUGS

While WinBUGSis a stand alone program, the easiest way to run it is from
R, using Andy Gelman’s bugs.Rsetup.

If you want to run it from your own Windows machine, WinBUGS is available
from

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

The current version is 1.4.1.

There is a newer version, known as OpenBUGS, which has just been updated
to version 2.1.0

http://mathstat.helsinki.fi/openbugs/

This version will run under Windows and Intel based linux. Up until recently
WinBUGS appeared to be more stable than OpenBUGS, though that may have
changed with the 2.1.0 update.

WinBUGS 1

While WinBUGSis a stand alone program, the easiest way to run on a
Windows machine is from R, using Andy Gelman’s bugs.Rsetup. It is
available at

http://www.stat.columbia.edu/∼gelman/bugsR/

It is compatible with both WinBUGS and OpenBUGS, at least up to version
2.0.1 (beta).

Note that there another R front end to OpenBUGS, BRugs, which is
compatible with OpenBUGS, but not WinBUGS (I think).

WinBUGS 2

WinBUGS Modelling Considerations

• Proper priors

• Distributions available

– Discrete univariate:
Bernoulli, Binomial, Categorical, Negative Binomial, Poisson

– Continuous univariate:
Beta, Chi-square, Double Exponential (Laplace), Exponential, Gamma,
Log-normal, Logistic, Normal, Pareto, t, Uniform, Weibull

– Discrete multivariate:
Multinomial

– Continuous multivariate:
Dirichlet, Multivariate Normal, Multivariate t, Wishart

• Note that more complicated situations are possible using programming
tricks in WinBUGS.

WinBUGS Modelling Considerations 3

Components of a WinBUGS Run

• Model

• Data

• Initial values

• Values to be returned

Parameters of the model, new values (e.g. yrep)

Components of a WinBUGS Run 4

WinBUGS Model

Components of a model are known as nodes in the WinBUGS documentation.
These are either stochastic (random variables) or logical (deterministic
functions of other nodes).

The WinBUGS language has a S-Plus/R feel to it. However it isn’t a perfect
match

Model:

yij
ind∼ N(θi, σ

2)

θi
iid∼ N(µ, τ2)

µ ∼ N(0, 106)

τ2 ∼ U(0, 1000)

σ2 ∼ Inv−Gamma(0.001, 0.001)

WinBUGS Model 5

WinBUGS Model:

model {
for(i in 1:nbeer) {
for(j in 1:nobs) {
sodium[i,j] ~ dnorm(theta[i],sigma2inv)

}
theta[i] ~ dnorm(mu,tau2inv)

}
mu ~ dnorm(0,1.0e-6) # mean of random effect
tau2 ~ dunif(0,1000) # variance of random effect
tau2inv <- pow(tau,-2) # precision of random effect
tau <- sqrt(tau2) # sd of random effect
sigma2inv ~ dgamma(0.001, 0.001) # measurement error precision
sigma <- 1 / sqrt(sigma2inv) # measurement error sd

}

When defining a model, a stochastic node is defined with ∼ and a logical
node with < − (like R).

WinBUGS Model 6

The name for all density functions in WinBUGS start with d. Often the
names are the same as the R equivalent, but not always (e.g. dbinom(n,p)
in R and dbin(p,n) in WinBUGS). Also the order of arguments may be
different

Also for location-scale families, a precision parameter is used instead of a
scale parameter. For example, for the normal, the density is parameterized
as

f(x|µ, τ) =
√

τ

2π
exp

(τ

2
(x− µ)2

)

instead of the more usual

f(x|µ, σ2) =

√
1

2πσ2
exp

(
1

2σ2
(x− µ)2

)

WinBUGS Model 7

Another example is the logistic distribution, which is parameterized as

f(x|µ, τ) =
τ exp(τ(x− µ))

(1 + exp(τ(x− µ)))2

instead of

f(x|µ, σ) =
exp((x− µ)/σ)

σ(1 + exp((x− µ)/σ))2

Nodes can only occur on the left side of a definition once. So don’t do

y[i] ~ dgamma(alpha, beta)
y[i] ~ dnorm(mu, sigma2inv)

in the same model file.

Also, functions can only be used on the right side of logical nodes, except for
link functions in generalized linear models. For example a probit regresson
model can be defined either by

WinBUGS Model 8

model {
for(i in 1:nobs) {
y[i] ~ dbin(p[i], n[i])
probit(p[i]) <- alpha + beta*x[i]

}
alpha ~ dnorm(0, 1.0E-6)
beta ~ dnorm(0, 1.0$-6)

}

or

model {
for(i in 1:nobs) {
y[i] ~ dbin(p[i], n[i])
p[i] <- phi(alpha + beta*x[i])

}
alpha ~ dnorm(0, 1.0E-6)
beta ~ dnorm(0, 1.0$-6)

}

WinBUGS Model 9

Also stochastic nodes to not need to be tied directly to data. For example,
simulating yreps in the above model can be done with

model {
for(i in 1:nobs) {
y[i] ~ dbin(p[i], n[i])
yrep[i] ~ dbin(p[i],n[i])
p[i] <- phi(alpha + beta*x[i])

}
alpha ~ dnorm(0, 1.0E-6)
beta ~ dnorm(0, 1.0$-6)

}

WinBUGS Model 10

Data

• Popular format is S-Plus list format (displayed as text). She the
examples

• For arrays, data can also be input in rectangular arrays

• Variable names must match the names in the model file

Data 11

Starting Values

• Can be given for stochastic nodes

• Must not be given for logical nodes. You will be a cryptic error message
(Incompatible copy)

• You do not need to give for all nodes. WinBUGS has an algorithm for
choosing starting values for nodes without user specified values.

• The WinBUGS algorithm for starting values they refer to as forward
sampling.

1. Start with any hyperparameters that aren’t given starting values and
sample from there prior.

2. Go to the next level in the hierarchy. Sample starting values for any
nodes at this level from the model, given values for nodes lower in the
hierarchy

Starting Values 12

Example:

Suppose that the model

model {
for(i in 1:nobs) {
y[i] ~ dbin(p[i], n[i])
yrep[i] ~ dbin(p[i],n[i])
p[i] <- phi(alpha + beta*x[i])

}
alpha ~ dnorm(0, 1.0E-6)
beta ~ dnorm(0, 1.0E-6)

}

is to be run. Suppose that starting values are given for alpha and y[i],
but not beta and yrep[i].

The forward sampling algorithm would

1. Sample beta from beta ∼ dnorm(0, 1.0E-6)
2. Then for each i, sample yrep[i] from yrep[i] ∼

dbin(p[i],n[i]) based on the alpha and beta available.

Starting Values 13

• Usually better to define them yourself.

• You particularly want to do this if the prior is vague, as α and β are in
this case.

• If you are running multiple chains, use multiple starting values, particularly
ones you are worried about converging properly. This will allow for better
convergence checks with R̂.

Starting Values 14

Output - Values Returned

When running a chain, you do not need to store all the values from the
chain.

• Burnin - usually not stored

• Thinning - only every k values are stored after the burnin period

• Some variables may not be needed for the analysis, and do not need to
be stored (e.g. low level hyperparameters)

Output - Values Returned 15

Running WinBUGS

• Can run WinBUGS directly

• The necessary inputs can be entered in multiple files or in a single
“Compound” document

• Can run from R with bugs.R front end

Running WinBUGS 16

bugs.R

To use bugs.R, there are four main steps.

1. Defining your data

2. Setting the starting values

3. Stating what is to be returned

4. Running WinBUGS

This is best exhibited with an example

bugs.R 17

beers <- read.table("beer_data.txt", header=T)
sodium <- matrix(beers$Sodium,ncol=8,byrow=T)
sodium.mean <- apply(sodium,1,mean)
sodium.var <- apply(sodium,1,var)
nbeer <- dim(sodium)[1]
nobs <- dim(sodium)[2]

data <- list ("nbeer", "nobs", "sodium")

inits <- function() {
list(theta=rnorm(6, sodium.mean, sqrt(sodium.var/nobs)),
mu=rnorm(1,mean(sodium.mean), sqrt(var(sodium.mean))),
tau2=var(sodium.mean),
sigma2inv=mean(sodium.var))}

parameters <- c("theta", "mu", "tau", "sigma")

beer.sim <- bugs(data, inits, parameters, "beer.bug",
n.chains=5, n.iter=500, n.thin=5)

bugs.R 18

1. Defining your data:

This must be a list of character strings with the names of the variables

data <- list ("nbeer", "nobs", "sodium")

2. Setting the starting values

This must be a function, which returns a list of the starting values

inits <- function() {
list(theta=rnorm(6, sodium.mean, sqrt(sodium.var/nobs)),
mu=rnorm(1,mean(sodium.mean), sqrt(var(sodium.mean))),
tau2=var(sodium.mean),
sigma2inv=mean(sodium.var))}

The values in the list must be stochastic nodes of the model.

bugs.R 19

3. Stating what is to be returned

A vector of strings containing the variables to be returned

parameters <- c("theta", "mu", "tau", "sigma")

4. Running WinBUGS

Need to specify what the data, initial value, parameters to be returned,
and the model file are. In addition you can specify the number of chains
(≥ 2), number of iterations, thinning rate, and the burnin are (these all
have defaults)

beer.sim <- bugs(data, inits, parameters, "beer.bug",
n.chains=5, n.iter=500, n.burnin = 250,
n.thin=5)

The model file must have the extension .txt or .bug to run correctly.

bugs.R 20

When WinBUGS finishes it will return all the information from the simulation
to the list beer.sim. In addition it attaches two lists to the search path.

In position 2 of the search path, it attaches the list bugs.sim which contains
all the desired variables output by WinBUGS. Also in this list is the deviance
for each simulated data set. This allows for the calculation of DIC and pD

for model comparison. If you store the output of bugs, this information will
be there in a couple of different formats.

In position 3, it attaches the list bugs.all, which is a copy of the output
of bugs.

Note that these two lists will die when you quit R, so you will need to store
the information from the run if you want to use it later.

In addition, you get two other pieces of output. The first is a summary
table of the run. In addition to be printed to the screen, it is also
stored in the output in list component summary. Access, for example,
by beer.sim$summary. The second is a graphical summary, based on
information, at least partly, in the information contained in the printed
summary.

bugs.R 21

Inference for Bugs model at "C:/Documents and Settings/Mark
Irwin/My Documents/Harvard/Courses/Stat 220/R/beer.bug"
5 chains, each with 500 iterations (first 250 discarded), n.thin = 5
n.sims = 250 iterations saved

Time difference of 6 secs
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

theta[1] 23.6 0.3 23.1 23.4 23.6 23.8 24.2 1.0 200
theta[2] 10.7 0.3 10.1 10.5 10.7 10.9 11.2 1.0 250
theta[3] 19.3 0.3 18.9 19.2 19.3 19.5 19.9 1.0 250
theta[4] 17.5 0.3 16.9 17.3 17.5 17.7 18.1 1.0 170
theta[5] 14.3 0.3 13.7 14.1 14.3 14.4 14.8 1.0 250
theta[6] 20.4 0.3 19.8 20.2 20.4 20.6 21.0 1.0 240
mu 18.1 3.6 11.4 16.4 18.1 19.9 25.6 1.1 250
tau 7.6 3.8 3.4 5.1 6.6 9.3 16.9 1.0 250
sigma 0.8 0.1 0.7 0.8 0.8 0.9 1.1 1.0 250
deviance 121.0 3.8 115.6 118.1 120.2 122.9 131.1 1.0 250
pD = 7.4 and DIC = 128.4 (using the rule, pD = var(deviance)/2)

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC is an estimate of expected predictive error (lower deviance is better).

bugs.R 22

80% interval for each chain R−hat

0

0

10

10

20

20

30

30

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

theta[1]
[2]
[3]
[4]
[5]
[6]

mu

tau

sigma

medians and 80% intervals

theta

10

15

20

25

111111111 222222222 333333333 444444444 555555555 666666666

mu

10

15

20

25

tau

0

5

10

15

sigma

0.6

0.8

1

1.2

deviance

115

120

125

130

Bugs model at "C:/Documents and Settings/Mark Irwin/My Documents/Harvard/Courses/Stat 220/R/beer.bug", 5 chains, each with 500 iterations

bugs.R 23

