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Standard error estimates for pump example 
 

 m = 1000 m = 100 Independent 

1λ  0.000752 0.000710 0.000075 

2λ  0.003992 0.002769 0.000205 

3λ  0.000885 0.001063 0.000111 

4λ  0.000446 0.000555 0.000094 

5λ  0.012051 0.011193 0.001009 

6λ  0.002258 0.002373 0.000439 

7λ  0.060813 0.040679 0.002970 

8λ  0.048219 0.037656 0.002807 

9λ  0.033030 0.028835 0.002945 

10λ  0.007568 0.007264 0.001428 

µ 0.019808 0.013840 0.005729 
2σ  0.139560 0.099674 0.056767 
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Monte Carlo and Optimization 

Monte Carlo EM (MCEM) / Monte Carlo MLE 

Simulated Annealing 

 

Monte Carlo EM 

Wei and Tanner (1990), Guo and Thompson 
(1992), Levine and Casella (2001) 

 

As we have seen before, a function we wish to 
optimize might be an integral. 

For example, in the EM setup, the likelihood to 
be optimized is of the form 

( ) ( ),g X f X Y dYθ θ= �  

where x is the observed data and y is the 
“missing” data. 
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In EM, optimization of ( )g x θ  is performed by 
the optimization of the sequence of  

( ) ( )log , ,n nQ E f X Y Xθ θ θ θ� �= � � 

where Y is chosen so that ( )nQ θ θ  is easy to 
determine and optimize. 

In particular, Y is chosen so that the integral 

( ) ( )log , , nf X Y f Y X dYθ θ�  

is easy to evaluate. 

One idea is to replace the direct integration 
with Monte Carlo Integration. 

 

Monte Carlo EM (Wei and Tanner version) 

MC E-step 

Sample ( )1, , ~ | ,m ny y f Y X θ�  

Let ( ) ( )
1

1ˆ log ,
m

n i
i

Q f X y
m

θ θ θ
=

= �  

( )ˆ
nQ θ θ  is a MC estimate of ( )nQ θ θ  
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MC M-step 

Set 

( )1
ˆarg supn nQθ θ θ+ =  

Example: Genetic Linkage 

( )

( )
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MC E-step: 

( )
( ) ( ) ( )1 4 2 3log log 1 ,

n

n

Q

E X X X X Y

λ λ

λ λ λ� �= + + + −� �

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
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log log 1
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= + + −
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where 4 4 4
ˆ , nX E X Y λ� �= � �. 

Now 4 4 4| ~ Bin ,
2

X Y Y
λ

λ
� �
	 
+� �

 so 

sample ( ) ( ) ( )1
4 4 4, , ~ Bin ,m

nx x Y λ�  

( )
4 4

1

4 4

1ˆ

ˆ ,

m
i

i

n

X x
m

E X Y λ
=

=

� �= � �

�
 

M-step: 

1 4
1

1 2 3 4

ˆ
ˆn

Y X
Y Y Y X

λ +
+=

+ + +
 

Sample Run 

m = 1000 

TOL = 61 10−×  

max 20n =  

0 0.5λ =  
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Iteration nλ  

0 0.5000000 
1 0.6086751 
2 0.6232812 
3 0.6258296 
4 0.6262932 
5 0.6273085 
6 0.6271988 
7 0.6259806 
8 0.6262454 
9 0.6256674 
10 0.6263483 
11 0.6265943 
12 0.6274692 

and so up to max 20n =  
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Basic Monte Carlo EM

Iteration
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Basic Monte Carlo EM

Iteration
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Notes: 

1) The number of imputations at each step 
can vary.  Often you want to start with nm  
relatively small and increase it towards the 
end. 

2) Any sampling scheme can be used here, 
independent, importance, or MCMC. 

3) Can be combined with exact calculation.  
Split the missing data into two pieces.  
Simulate one piece and calculate 
conditional expectations of second piece 
based on simulated data.  (Hybrid MCEM) 

3) In the M-step, a maximizer is not needed, 
just a value that increases ( )ˆ

nQ θ θ . 

4) Unlike normal EM, this procedure does not 
converge to a stationary point of the 
likelihood surface, but to a stochastic 
process centered at a stationary point of the 
likelihood surface. 

5) This method is similar to the Stochastic EM 
method of Diebolt and Ip (1996).  In there 
approach m = 1 but you keep the old 
samples in calculating ( )ˆ

nQ θ θ . 
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Reweighted Monte Carlo EM (Irwin, 1995, 
Levine and Casella, 2001) 

Sampling step 

Sample ( )*
1, , ~ | ,my y f Y X θ�  

MC E-step 

Update weights 

( ) ( )
( )

( ) ( )
( )

*

,

,

i n
n i

i

n i
n i

n j

f X y
w y

f X y

w y
w y

w y

θ

θ
=

=
�

�

 

Let ( ) ( ) ( )
1

ˆ log ,
m

n n i i
i

Q w y f X yθ θ θ
=

=� �  

( )ˆ
nQ θ θ  is a MC estimate of ( )nQ θ θ  

MC M-step 

Set 

( )1
ˆarg supn nQθ θ θ+ =  
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Sample Run 

1 2m m=  = 1000, 3 10000m =  

TOL = 61 10−×  

max 20n =  

Pass 1: *
0 0.5λ λ= =  

Pass 2 & 3: *
0λ λ=  = estimate from previous 

pass 

 

Reweighted MCEM - Pass 1

Iteration
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Reweighted MCEM - Pass 1

Iteration
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Reweighted MCEM - Pass 2

Iteration
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Reweighted MCEM - Pass 3

Iteration
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Notes: 

1) Usually you want to run this algorithm at 
least twice.  Once to get in a region of the 
optimum, and the second one to tighten up 
the estimate. 

2) The number of imputations at each step 
can vary.  Often you want to start with 1m  
to be moderate in size and increase it 
towards the end. 

3) Particularly useful when simulation is time 
consuming.  Reweighting is often much 
quicker and easier than sampling. 
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4) Any sampling scheme can be used here, 
independent, importance sampling, or 
MCMC.  Hybrid MCEM also works here and 
is preferable if possible. 

5) In the M-step, a maximizer is not needed, 
just a value that increases ( )ˆ

nQ θ θ  

6) The starting point in the first E-step 0θ  
need not be the simulation point *θ .  In fact 
using different 0θ  allows for easy searching 
for multiple modes. 

7) Weight properties 

( ) ( )
( )*

p y
w y

p y
θ

θ
θ

=
 

( ) ( )
( ) ( )* *

*
, ,

g X
E w Y X l

g X
θ

θ
θ θ θ

θ
� � = =� �  

( ) ( )*

1

1ˆ ,
m

i
i

l w y
m θθ θ

=

= �  

As seen before ( )*ˆ ,l θ θ  is an unbiased 

estimator of ( )*,l θ θ . 
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8) Convergence properties 

i ) ( ) ( )* *
1

ˆ ˆ, ,n nl lθ θ θ θ+ ≥ . 

ii ) procedure converges to stationary point 
of ( )*ˆ ,l θ θ . 

9) Properties of MC MLE: 

MLE: θ̂  maximizer of ( )g X θ  (or ( )*,l θ θ ). 

MC MLE: θ�  maximizer of ( )*ˆ ,l θ θ . 

i ) θ�  is a consistent estimator of θ̂ . 

ii ) Asympotically normal 

iii ) ( ) ( ) ( ) ( )1 11 ˆ ˆ ˆVar I V I
m

θ θ θ θ− −=�  

where 

( ) ( )
( )

( ) *

*

, log ,
Var ,

,

f y x D f y x
V x

Df y x

θ θ
θ θ

θθ

� �
	 
=
	 

� �

 

( ) ( )2

2

logD f x
I

D

θ
θ

θ
=  
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This variance formula may only hold when 
the sampler generates independent 
realizations.  I’m not sure about MCMC. 

( )log g x θ  

θ 

 

( )log ,f y x θ  

θ 
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Standard Errors 

Louis’ formula can easily be approximated by 
Monte Carlo.  For Reweighted MCEM, the 
estimator of the information matrix is 

( ) ( ) ( )

( ) ( )

( ) ( )

2

2

2

2

log ,ˆ

log ,

log ,

i
i

i
i

i
i

D f x y
I w y

D

D f x y
w y

D

D f x y
w y

D

θ
θ

θ

θ
θ

θ
θ

= −

� �
− 	 


	 

� �

� �
+ 	 

	 

� �

�

�

�

�

�

�

 

 

Simulating Annealing 

Another Monte Carlo approach for optimizing a 
function. 

Approach for determining global optima, not 
local. 

Useful for high dimensional, multimodal, 
complicated functions. 
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Examples where useful 

1) Phylogentic tree reconstruction (Salter, 
2000) 

Want to infer the evolutionary history based 
n observations (morphology, genetic, etc 
data) and describe it with a binary tree. 

Number of possible unrooted binary trees is 

( )
1

1

2 3
n

i

i
−

=

−∏  

For n = 30, this is 368.69 10× . 

2) Traveling Salesman Problem 

A salesman has n towns to be visited.  
Wants to minimize the traveling distance 
and finish at his starting point  

This is known to be an NP complete 
problem 
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The name comes from condensed matter 
physics.  Annealing is a thermal process for 
obtaining low-energy states of a solid in a heat 
path.  The procedure has two steps 

1) Raise the temperature of the heat bath 
enough for the solid (metal) to melt. 

2) Decrease the temperature slowly to near 
zero so that the particles in the system can 
arrange themselves in the ground state of 
the solid (i.e. crystallize). 

 

Problem:  Want to minimize a function ( )h x  or 
maximize a function ( )h x− .  This is equivalent 

to maximizing the function ( )( )exp h x T−  for 
any given temperature T. 

 

Method: 

1) Let 1 2 3T T T> > >� be a sequence of 
temperatures in which 1T  is relatively large 
and lim 0kk

T
→∞

= . 
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2) At each temperature kT  run kN  steps of a 
M-H sampler with stationary distribution 

( ) ( )( )expk kx h x Tπ ∝ −  

 Pass the final configuration of x to the next 
iteration and set k to k + 1. 

 

Why does SA work: 

For any system in which  

( )( )exp 0h x T dx− <�  

for all T, distribution kπ , as k increases puts 
more and more of its probability mass 
(converging to 1) into the vicinity of the global 
maximum of ( )h x− . 

Hence a sample from kπ  will almost certainly be 
in the vicinity of the global optimum of ( )h x  
when kT  is close to 0. 

And as T → ∞, ( )( )exp h x T−  goes to a Uniform 
distribution 
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Example function 

( ) ( )( )2
cos(14.5 0.3) exp 1h x x x− = − + − −  
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In addition, as we have seen (sort of) M-H 
algorithms will tend to accept more likely 
proposals.  They definitely will with symmetric 
proposal distributions. 

So SA will tend to move to points when ( )h x−  
increases, but can move to points where ( )h x−  
is lower so it can move out of a local, but lower, 
mode, into a better mode. 

It can be shown that the global optimum can 
be reached with SA with probability 1 if the 
temperature variable kT  decreases sufficiently 

slowly enough ( ( )1log kO L− ) where 

1k kL N N= + +� . 

This slow temperature decrease is required to 
make sure the chain has run long enough to 
get into the dominant mode. 

The large kT  allow for the space to be 
completely sampled and the small kT  focus on 
the global optimum. 

In practice cooling schedules like these aren’t 
used.  Linear or exponential is more common 
as these give more manageable computational 
burden. 
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However you are no longer guaranteed to find 
the global optima.  However you usually find a 
reasonable answer. 


