
1

Monte Carlo Methods

Interested in

() () ()E f X f x d xµ� � =� � �

Examples:

• Type I error rate of a hypothesis test

• Mean width of a confidence interval
procedure

• Evaluating a likelihood

• Finding posterior mean and variance

Often calculating these will be difficult.

Approximate with

()
1

1 n

i
i

f x
n =
�

where 1, , nx x� is sampled from ()Xµ .

Under certain regularity conditions,

() ()
1

1 n

i
i

f x E f X
n =

� �→ � ��

2

Issues:

• probability measure being integrated over

• function being integrated

• sampling scheme

• form of convergence

Focus: Sampling Schemes

• Independently and identically distributed
(IID)

• Importance sampling

• Sequential importance samplers (SIS)

• Markov Chain Monte Carlo (MCMC)

 • Gibbs sampling

 • Metropolis – Hastings (M-H)

 • Reversible jump

 • Bridge sampling

 • etc

• and so on

3

Choice is often driven by ()Xµ , e.g.,

IID infeasible leads to use of SIS or MCMC

SIS may work but Gibbs sampler has
reducible chain

M-W works when SIS has poorly behaved
importance sampling weights.

etc

There is no one Monte Carlo approach that will
solve every problem.

Want to develop a set of tools, that can be
used, possibly in combination, for a wide range
of problems.

Need to recognize when each of them should
work and when modifications are needed.

4

Basic Simulation Methodology

Pseudo-random numbers:

“Random” numbers generated on computers
are not random but generated by deterministic
algorithms.

Basic problem: generate ui, 0 < ui < 1, that
appear to be an iid sample from the ()0,1U
distribution.

Once you have these, you can simulate from
“any” distribution.

Uniform deviates

Instead of generating ()0,1U , most generators
actually generate integers (()0, 1U m − or

()1, 1U m −) and then convert these to the
interval ()0,1 .

Numerically more stable and faster.

5

Multiplicative Congruential Generators:

Generate integer sequence { }ik by

1 modi ik ak m+ =

for suitably chosen positive integers a and m,
where b mod m is the remainder from dividing
b by m.

If 1 1modma m− = and 1modla m≠ for 0 < l < m –
1 and if 0k is a positive integer that isn’t a
multiple of m, then it can be shown that

1 1, , mk k −� will be a permutation of {1, 2, … , m –
1} (a is said to be a primitive root of unity mod
m).

The period of this generator is m – 1.

In general the period is the number of values
until the generator starts to repeat.

Linear Congruential Generators

()1 modi ik ak b m+ = +

for suitable integers a, b, and m.

6

Good generators should have

• long periods

• low (near 0) correlations

• give samples that look uniform

This holds for any generator, not just
congruential generators.

Choices for m, a, and b

1) m = 312 1− : largest prime integer that can
be stored on most computers

• 57a = (IMSL, early versions of Matlab)

• a = 950,706,376 (IMSL option, shown to
be good by Fishman & Moore)

2) m = 322 : number of integers that can be
represented on most computers.

• Can’t get full period if b = 0 since m is
even.

• Maximum period of 302 can be achieved
if 5 8a l= + for some l. Common choice
is a = 69069

7

• Can get full period of 302 when b ≠ 0,
such as with a = 69069 and b =
23606797.

Problems with congruential generators:

• Must have some autocorrelation

• n dimensional uniformity (how close do n
tuples of consecutive draws achieve
uniformity in the n-dimensional unit cube).

• congruential generators tend to give n-
vectors that concentrate near hyperplanes
in n-dimensional space for some n.

Example: RANDU generator

• IBM SYSTEM/360 generator

()16 31
1 2 3 mod2i ik k+ = +

• Has the property that
31

1 29 6 0mod2i i ik k x+ +− + =

8

 Proof:

()22

32 31

9 6 3

2 2 2
i i i i

i i

x ax a x a x

x x

− + = −

= = ×

• Realizations of triples must fall on one of 15
planes, 312 apart

from <http://www.unf.edu/ccec/cis/CIShtml/RANDUinfo.html>

9

• This generator is still around is system
software.

From HP documentation

<http://h18009.www1.hp.com/fortran/docs/lrm/lrm0315.htm>

GSL (Gnu Scientific Library)
<http://www.gnu.org/software/gsl/manual/gsl-
ref_17.html#SEC271>

In GSL, its there for backward compatibility
with old code that people use and historical
completeness.

• With congruential generators, the leading
bits tend to be more random than the low
order bits, so one shouldn’t treat subsets of
the bits in the representation as separate
random numbers

• Standard congruential generators have
periods that are too short for some
statistical applications.

10

Shuffling algorithm

• Initialize: () ; 1, ,is i u i N= = � and set

()y s N= .

• Generate a new value u and set
()int 1j yN= + , where ()int x is the largest

integer � x.

• Set ()y s j= , ()s j u= , and return y as the
uniform deviate.

The idea behind this scheme is that a
permutation of uniforms is still uniform.

By combining generators with long, but not
equal periods, a new generator with a much
longer period can be created.

Example: ran2 (Numerical recipies due to
L’Ecuyer)

Generator 1 (iv): a = 40014, m = 2147483563.
Uses shuffle algorithm with N = 32.

Generator 2 (iw): a = 40692, m = 2147483399.

Returns

() () () ()1i i i i i i i i iu v w I v w v w I v w= − ≥ + − + <

11

The period of this generator is the product of
the periods of the two streams, divided by any
common factors.

The period is about 18 612.3 10 2× ≈ .

Recursive generators

1 1 1 modi i l i lk a k a k m+ + −= + +�

Linear combination of the previous l values.

Maximum period: 1lm −

Fibonacci generators

17 5

97 33

i i i

i i i

u u u

u u u
− −

− −

= −
= −

If lagged difference < 0, add 1 to result.

12

Shift / Tausworthe generators

Based on binary expansion of integers
32

1

1

2l
l

l

j b −

=

=�

The idea is to shift the sequence and then
combine it with the original sequence by
exclusive or.

As part of the S-Plus generator, they use the
following shift generator

double ush(j)
 unsigned long *j;
{
 double v = 4294967296; /* v =
2^32 */
 *j = *j ^ (*j >> 15);
 *j = *j ^ (*j << 17);
 return(*j/v);
}

*j >> 15 shifts the bits right by 15 and
replaces bits 1 to 15 with 0. ^ is exclusive
or so *j = *j ^ (*j >> 15) replaces
the vector j with

()32 18 17 32 1 16, , , , , mod2b b b b b b+ +� �

13

The S-Plus generator combines this with a
congruential generator with a = 69069, m = 322
with an exclusive or operation.

R has 6 different uniform generators. The
default is the Mersenne Twister, a generalized
feedback shift register (GFSR) generator with a
period of 19937 60002 1 10− ≈ . To see the others
available in R, see help(RNGkind).

Bottom line: Creating a good generator is an art
and a science.

The constants used in congruential generators
and the lags used in Fibonacci and Tausworthe
generators are not arbitrary. Poor choices can
lead to very nonrandom behaviour (such as
with RANDU).

Diehard tests

A set of procedures for testing random number
generators created by George Marsaglia.

14

Generating from non-uniform distributions

For a cumulative distribution function (CDF)
[] ()P X x F x≤ = , the inverse CDF is defined by

() (){ }1 inf :F u x F x u− = ≤

For continuous RVs,

() ()
()()

1

1

P F X u P X F u

F F u u

−

−

� �� �≤ = ≤� � � �

= =

so () ()~ 0,1F X U . Conversely, if ()~ 0,1U U

() ()1P F u x F x−� �≤ =� �

Thus, given an iid ()0,1U sample { }1, , nu u� , an
iid sample { }1, , nx x� from F can be obtained by

()1
i ix F u−= .

Example: Cauchy

()

() ()()1

1 1
; , arctan

2

; , tan 1 2

x
F x

F u u

µµ σ
π σ

µ σ µ σ π−

−� �= + 	

� �

= + −

15

Example: Exponential

() ()
() ()1

; 1 exp

; log 1

F x x

F u u

µ µ

µ µ−

= − −

= − −

Sometimes its easier to work with the survivor
function () ()1S x F x= − . Since U and 1 – U
both have uniform distributions, ()1S u− will
also be a draw from F.

So

() ()1 ; logS u uµ µ− = −

will also give a draw from an exponential
distribution.

Not all distributions (e.g. normal or gamma)
have nice closed form expressions for 1F − .

The density is usually of a nice form, but often
the CDF, and thus its inverse aren’t. However
there are often good analytical approximations
to 1F − , so these can be used instead.

For example with the standard normal, a
rational function approximation could be used
(R and Matlab definitely do, S-Plus probably).

16

Note that the Inverse CDF method isn’t
commonly used for most distributions as it
tends to be slow.

Functions like log, sin, cos, etc tend to be
somewhat expensive to calculate.

Though surprisingly in R, it is the default for
normals. However there are 4 other methods
available (see help(RNGkind)). In S-Plus and
Matlab, I don’t know what they are doing.

Discrete Distributions:

Suppose that the distribution has support
points 1 2, , , ks s s� (k possibly infinite) and set

[]
1

j

j i j
i

p P X s P X s
=

� �= = = ≤� ��

Then independent observations ix can be
generated by setting i jx s= if 1j i jp u p− < ≤
(where 0 0p =).

Essentially this is inverting the CDF.

17

If k is small, then only a few comparisons need
to be made. However if k is big, many
comparisons may be needed (if iu is close to 1).

In this case, other methods are needed.

Relationships with other distributions:

Examples:

• ()2~ ,X N µ σ then XY e= is lognormal

• ()~ 0,1X N then 2Y X= is 2
1χ

• ()~ 1,X Gammaα α , ()~ 1,X Gammaβ β , then

()~ ,
X

Y Beta
X X

α

α β

α β=
+

Polar Coordinates and the Normal Distribution

Suppose that X, Y are independent ()0,1N
variables and consider the polar coordinates
transformation given by

cos , sin ; 0,0 2X R Y R Rθ θ θ π= = ≥ ≤ <

18

It is easily shown that ()~ 0,2Uθ π , 2 2
2~R χ ,

and they are independent. Also

[] ()2 2 2exp 2P R r R r r� �> = > = −� �

Box-Muller Method

• Generate ()1 2, ~ 0,1u u U

• Set 12logR u= − and 22 uθ π=

• Set 1 cosx R θ= and 2 sinx R θ=

Marsaglia Polar Method

The sin and cos functions (which are slow) can
be avoided.

Underlying the Box-Muller method is to pick
uniform angle independently of a radius. This
can be recast in terms of picking points in the
unit circle

19

Let ()1 2, ~ 1,1v v U − such that 2 2
1 2 1v v+ ≤

Let θ be the counterclockwise angle from the
positive 1v axis to the point ()1 2,v v . By
symmetry, ()~ 0,2Uθ π and

1

2 2
1 2

cos
u

u u
θ =

+
 and 2

2 2
1 2

sin
u

u u
θ =

+

Also 2 2
1 2P v v u u uπ π� �+ ≤ = =� � , so

()2 2
1 2 ~ 0,1v v U+

20

Finally θ and 2 2
1 2v v+ are independent (again by

symmetry).

Thus, given ()1 2,v v , two normal deviates are
given by

2 2
1 2u v v= + , 2log /w u u= − ,

1 1x v w= , 2 2x v w=

This is an example of the Acceptance-Rejection
Method.

For this example, the fraction of pairs ()1 2,v v
that are accepted = 4π = 0.785, the ratio of the
area of the circle to the square.

An old generator ()0,1N

Let ()1 12, , ~ 0,1u u U� and 6
i

z u= −�

[] ()1 1
;Var

2 12i iE u u= =

()6;Var 1i iE u u� �= =� �� �

21

So z has mean 0 and standard deviation 1 and
is approximately normal (very approximately)
by the “Central Limit Theorem”

-4 -2 0 2 4

-4
-2

0
2

4

rnorm (R)

su
m

(r
un

if(
12

)-
6)

This generator has tails which are too light.

An example of a consequence of this would be
to incorrectly estimate the coverage rate of a
confidence interval procedure.

